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Abstract

The present paper computes the debt-to-GDP ratio chosen by a self-interested government that
engages in ‘excusable’ default. The government maximizes the utility of its own consumption
over a period of time that is the government’s expected stay in office, which the government
fearing loss of office upon default seeks to extend to the fullest by defaulting only ‘excusably’
when unable to muster the funds necessary for debt service. The chosen debt ratio appears to
be much closer to prevailing ratios than that chosen under the alternative assumption of an
altruistic government engaging in strategic default: our baseline case has debt-to-GDP ratio
82% under excusable default, far above the 2.7% under strategic default.



1 Introduction

Recent years have seen a dramatic increase in many OECD countries’ public debt. Our purpose
in the present paper is to develop and calibrate a model that can at least partially reproduce
the high levels of public debt now prevailing in a large number of developed countries.

Our model in its baseline calibration has debt-to-GDP ratio 82%. We are able to obtain
so high a debt ratio because we depart from existing work in one central dimension: where
previous work has assumed that governments default strategically, weighting the costs of debt
service against those of default in their decision whether to service their debt or to default, our
work assumes that governments engage in what Grossman and Van Huyck (1988) call excusable
default. Excusable default has a government default only when the entirety of the resources it
can muster, the country’s maximum primary surplus and any proceeds from new debt issuance,
fail to cover the cost of debt service. Thus, whereas strategic default can be viewed as a matter
of will (the government decides to default as the result of a cost-benefit analysis that deems
default more attractive than debt service), excusable default can be viewed as a matter of means
(the government cannot but default as it lacks the means fully to service its debt). Collard,
Habib, and Rochet (2015) have used the concept of excusable default to compute the maximum
level of debt a government can sustain; we use that same concept to compute the debt level a
government chooses. The debt levels we compute are much closer to prevailing debt levels than
are those computed under strategic default: the same baseline calibration that has debt-to-GDP
ratio 82% under excusable default has ratio 2.7% under strategic default.

The central intuition of our result is simple: the debt level chosen by a government depends,
inter alia, on the cost of debt; lenders can be expected to be much more willing to provide
high levels of debt at reasonable interest rates when they expect borrowers to do their utmost
to service that debt than when they expect borrowers continuously to trade off the costs and
benefits of debt service and default in deciding whether to service the debt. Debt being cheaper
under excusable default, the government optimally chooses to borrow more in that case. Indeed,
we find optimal debt to be close to maximum sustainable debt: the former but not the latter
accounts for the government’s concern for future payoffs; these are jeopardized only little through
debt-induced default, because the low volatility of growth makes the probability of default
very low even at maximum sustainable debt; there is therefore little reason for the government
to choose optimal debt much below maximum sustainable debt, which represents the most
advantageous trade-off between payment promised and proceeds received.1

Underlying the central assumption of excusable default is that of a self-interested government:
the government does its utmost to stave off default because it expects to lose power upon default;
senior members of a government that has lost power see the end of their political careers.2

A self-interested government that engages in excusable default therefore maximizes not total
consumption but that which accrues to the government and its favored constituents, over a

1The adjective ‘optimal’ denotes optimality from the perspective of the government. As the next paragraph
makes clear, optimal debt is not necessarily optimal from the perspective of the country.

2Section 2 further justifies the assumption of excusable default.
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period of time that extends not over an infinite horizon but over the government’s expected
time in office. This is in contrast to governments that engage in strategic default, which are
generally assumed to behave altruistically, maximizing the entire population’s consumption
over the infinite horizon that spans the successive lifetimes of the country’s present and future
generations.3 An implication of the distinction between self-interested and altruistic government
is that the former is concerned with total public debt, both external and domestic, whereas the
latter is concerned only with external public debt, domestic public debt being but a transfer
between nationals.4

We examine the sensitivity of optimal debt and its associated default probability (PD) to
various parameters of interest: the maximum primary surplus (MPS) which, along with the
proceeds from new debt issuance, serves to service maturing debt, the fraction of total output
that accrues to the self-interested government, the government’s risk aversion, its probability
of remaining in power, and its discount factor, the risk-free interest rate, and the mean and
volatility of the rate of growth in output. Changes in the maximum primary surplus, the interest
rate, and the mean and volatility of the growth rate have major impacts on optimal debt. For
example, optimal debt increases from 40% of GDP to 160% as MPS increases from 2.5 to 10%.
These changes appear to be due to changes in maximum sustainable debt (MSD): optimal debt is
generally only a few percentage points below maximum debt; large changes in MSD consequently
result in large changes in optimal debt. MSD increases in MPS and in the mean growth rate,
reflecting the increased availability of resources for debt service; it decreases in the risk-free
interest rate and in the volatility of the growth rate, the former result reflecting the increased
attractiveness of the risk-free investment opportunity and the latter the decreased attractiveness
of its now riskier alternative. In contrast to the large changes in optimal debt, the probability of
default is hardly if at all affected by changes in the four parameters: changes in these parameters
are accommodated nearly exclusively through changes in the quantity (level) rather than the
quality (risk) of debt. Collard et al. (2015) find a similar result for MSD, which they attribute
to their – and our – assumptions of lognormally distributed growth rate and zero recovery in
default.

Confirming the central role of maximum debt for optimal debt, there is little change in
optimal debt where MSD is left unaffected. Optimal debt decreases by only a few percentage
points as the government’s take or its probability of remaining in power increase, or as its
discount factor decreases: the larger stake in the future these imply leads the government
to decrease the probability of default by decreasing indebtedness. Much the same is true of
risk-aversion: a more risk-averse government decreases debt in order to decrease the probability
of default.

In order to shed further light on our results and on the importance of our assumption of
excusable default, we consider the alternative case of an altruistic government that engages

3Amador (2004), Cuadra and Sapriza (2008), Hatchondo, Martinez, and Sapriza (2009), Amador and Aguiar
(2011), and Acharya and Rajan (2013) are exceptions in this regard.

4Reinhart and Rogoff (2011) stress the importance of domestic public debt.
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in strategic default. We adapt our model to that case, using Aguiar and Gopinath’s (2006)
2% loss of output in default and Arellano’s (2008) 73.4% probability of escaping default.5 We
obtain optimal debt ratio 2.7%, slightly above Arellano’s 1% and below Aguiar and Gopinath
5%, and very much below the 82% ratio obtained under excusable default.6 While the 2.7% and
82% ratios are not strictly comparable, the former pertaining to external public debt and the
latter to total public debt, the difference is so large as to provide at least partial support for our
assumptions of excusable default and self-interested government. We note that it is possible to
obtain as high a value of optimal debt with strategic default as with excusable default, but that
this implies unreasonably high costs of default (48.25% of GDP), or unreasonably low probability
of escaping default (2.2% per annum).

Our baseline case has probability of default at optimal debt 0.106%, which corresponds to
the rather improbable frequency of one default per millennium. Introducing the possibility of
growth collapses (Rietz, 1988; Barro, 2006; Barro and Ursua, 2011) increases the probability of
default at optimal debt to 0.953%, a much more reasonable one default per century; optimal
debt decreases to 68%.

The paper proceeds as follows. Section 2 briefly reviews the literature. Section 3 derives the
expression for maximum sustainable debt. Sections 4 and 5 derive the Bellman equations for
optimal debt under excusable and strategic default, respectively. Section 6 parametrizes the
model. Section 7 computes optimal debt under excusable default and examines its sensitivity
to parameter values. Section 8 computes optimal debt under strategic default, analyzes its
sensitivity to parameter values, and compares it to optimal debt under excusable default. Section
9 introduces the possibility of growth collapses. Section 10 computes for the United States the
values initially computed for the Euro Area. Finally, Section 11 concludes.

2 Literature Review

The extensive literature on sovereign debt is a testimony to the importance of that topic.7 Our
paper is in the line of two strands of work within that literature, the first on optimal sovereign
debt and the second on maximum sustainable debt. The work on optimal sovereign debt has
quantified, refined, and extended Eaton and Gersovitz’s (1981) seminal contribution; it has
generally maintained their assumption of strategic default. Collard et al. (2015, pp. 386-387)
briefly review various refinements to Eaton and Gersovitz, from Aguiar and Gopinath’s (2006)
incorporation of a trend into the output process, through Arellano’s (2008) asymmetric cost
of default, Mendoza and Yue’s (2012) endogenous cost of default, Cuadra and Sapriza’s (2008)
political risk, Yue (2010) and Benjamin and Wright’s (2009) renegotiation in default, Hatchondo
and Martinez (2009) and Chatterjee and Eyigungor’s (2012) debt maturity, and Fink and Scholl’s

5Arellano’s (2008) 28.2% quarterly probability of escaping default is our annual 73.4%.
6The values for Aguiar and Gopinath (2006) and Arellano (2008) are those reported in Cohen and Villemot

(2013, Table 1).
7See the surveys by Aguiar and Amador (2014) and Panizza, Sturzenegger, and Zettelmeyer (2009), the

monographs by Reinhart and Rogoff (2009) and Sturzenegger and Zettelmeyer (2006), and the references therein.
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(2015) conditionality, to Cohen and Villemot’s (2013) ‘prepaid’ cost of default.8 Cohen and
Villemot (Table 1) report the corresponding optimal debt ratios. These range from 1% (Arellano,
2008) to 38% (Cohen and Villemot, 2013) of GDP; they generally represent external public debt
only, not the total public debt which we seek to reproduce.

The work on maximum sustainable debt has received much of its impetus from the afore-
mentioned increase in OECD country debt.9 Bohn (1998, 2008) has analyzed the requirements
for sustainability, which Gosh, Kim, Mendoza, Ostry, and Qureshi (2013) have used to develop
of measure of maximum debt and the ‘fiscal space’ it affords. Tanner (2013) has developed a
measure of maximum liability that is more equity- than debt-like. As do Gosh et al., Collard et
al. (2015) develop a debt-like measure of maximum sustainable debt. Collard et al.’s measure is
perhaps ‘less maximum’ and ‘more sustainable’ than Gosh et al.’s, in the sense that any shortfall
in growth below that necessary to service maximum debt implies certain default for Gosh et al.,
whereas it implies more probable but still uncertain default for Collard et al.

Our paper’s concern is with optimal debt, which is computed as being some debt level short of
maximum sustainable debt. Optimal debt falls short of maximum debt because of government’s
concern with – its own – future welfare: higher debt implies higher probability of default; default
implies foregone utility; a government concerned with future welfare therefore seeks to avoid
default by choosing a level of debt lower than maximum debt.

As noted previously, the assumption of excusable default is central to our analysis. How
realistic is it? Very! Levy Yeyati and Panizza (2011) provide strong evidence of governments’
reluctance to default: governments appear to default only as a last resort, after they have tried
every possible way of staving default off. While debt service is costly, default is generally even
costlier, especially from the point of view of a government that can generally expect to lose
power in the aftermath of default (Borensztein and Panizza, 2009; Malone, 2011). Even a less
than fully self-interested government may do its utmost to avoid default: Tomz (2007) has
argued that creditors are much more lenient towards borrowers for whom default was clearly
unavoidable than those who are perceived to have been too quick to default; Bolton and Jeanne
(2011) have noted the potential of sovereign default to jeopardize the proper functioning of an
entire banking system, in view of government bonds’ importance as collateral for bank loans.

3 Maximum Sustainable Debt

The first step in our analysis consists in estimating maximum sustainable debt. We follow
Collard et al. (2015) for that purpose.

Let yt denote a given country’s output in period t, Dt the debt raised by the country’s
government in that same period, to be repaid in its entirety in the following period t+ 1 (we
assume that debt is fully amortized every period), Bt the proceeds obtained by the government

8See also Section 6 in Aguiar and Amador (2014). Hamann (2002) constitutes an early attempt at calibrating
optimal sovereign debt levels.

9Such work can, however, be traced to Aaron’s (1966) early work on constant debt ratios, as well as Reinhart,
Rogoff, and Savastano’s (2003) later work on ‘debt intolerance.’
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in period t from raising that debt (we assume all debt is issued in the form of zero-coupon
bonds), αyt the maximum primary surplus (MPS) the country can achieve on a sustainable
basis, and r the risk-free interest rate.10 Expressed as a fraction of period-t output yt, debt
and proceeds can be written dt = Dt/yt and bt = Bt/yt. Let gt+1 ≡ yt+1/yt denote the rate of
growth in output between periods t and t+ 1; g is assumed to be i.i.d. over the range [0,∞); we
denote F (.) and f (.) the cdf and pdf of g , respectively.

We seek maximum sustainable debt (MSD) dM and maximum sustainable borrowing (MSB)
bM .11 We start with the latter. If the country were to raise debt dtyt in period t, it would
default on that debt in the period t+ 1 in which the debt is due when

αyt+1 + bMyt+1 < dtyt. (1)

The RHS represents the debt to be repaid in period t+ 1, the LHS the resources available to the
government for that purpose; these are the sum of the MPS the country can achieve, αyt+1, and
the maximum proceeds from sustainable new borrowing in period t+ 1, bMyt+1.

Rearranging (1), default occurs when the growth rate gt+1 is such that

gt+1 <
dt

α+ bM
≡ gE,t+1; (2)

gE,t+1 denotes the critical rate necessary to avoid default. Assuming zero recovery in default,
borrowing proceeds btyt corresponding to debt issued dtyt equal

btyt = dtyt
1 + r

Pr [gt+1 > gE,t+1] = dtyt
1 + r

[1− F (gE,t+1)] . (3)

Using (2) to write
dt = (α+ bM ) gE,t+1 (4)

and dividing (3) by yt, we can write borrowing proceeds as a fraction of output

bt = α+ bM
1 + r

gE,t+1 [1− F (gE,t+1)] . (5)

Borrowing proceeds bt display a ‘Laffer Curve’ property in the critical rate necessary to avoid
default gEt+1. Proceeds are zero when that rate is zero, as only when no debt is raised can
there be no default when growth and consequently output are zero (gt+1 = gE,t+1 = 0 implies
yt+1 = 0).12 Proceeds are also zero when that rate is infinite, as default occurs with certainty in
such case. Proceeds increase and then decrease between these two extremes.13 Clearly, then,
borrowing proceeds are maximized when the critical rate maximizes g [1− F (g)]; that rate does
not depend on t because the cdf F (.) does not. These maximum proceeds are sustainable,

10Maximum primary surplus is the difference between maximum government revenues – excluding the proceeds
from new debt issuance – and minimum government spending – excluding the cost of debt service. Minimum
government spending is not zero: some basic level of essential services must be provided in all circumstances (e.g.,
law and order, health, education, etc. . . ).

11MSD dM and MSB bM will be seen below not to depend on date t.
12This is perhaps too literal an interpretation of (5). The basic idea is that debt must be very low for default to

be avoided even for very low growth and output realizations.
13Note that ∂bt/∂gE,t+1|gE,t+1=0 > 0.
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for they rely for debt service on future proceeds that are themselves sustainable. Maximum
sustainable borrowing bM therefore is the fixed point

bM = α+ bM
1 + r

gM [1− F (gM )] (6)

⇒ bM = αgM [1− F (gM )]
1 + r − gM [1− F (gM )] (7)

where
gM = arg max

g
g [1− F (g)] . (8)

Note that the fixed point property precludes reliance on unbounded borrowing ratios.
Using (4), we have that MSD dM equal

dM = (α+ bM ) gM = α (1 + r) gM
1 + r − gM [1− F (gM )] . (9)

We denote PDM the corresponding probability of default, PDM ≡ F (gM ).

4 Optimal Debt under Excusable Default

We now turn to the determination of optimal debt, making use of our previous analysis of
maximum debt and borrowing for that purpose.

The self-interested government’s period-t consumption is ϕyt + btyt − dt−1yt−1, where ϕ,
ϕ < 1, denotes the fraction of output that accrues to the government, which further makes use
of the entirety of net debt proceeds – new debt proceeds minus debt repayment. Note that
the self-interested government does not distinguish between foreign and domestic debt, as both
constitute sources of additional funds to the government as well as claims on funds that would
otherwise be available to the government; debt under excusable default therefore should be
viewed as total debt.

We denote u (.) the utility function that the government maximizes, β, β 6 1, the discount
factor, and θ, θ 6 1, the probability that the government remain in power: a self-interested
government’s horizon coincides with the government’s expected time in office. We assume that
the senior members of a government that has defaulted never again return to power after default;
their political lives end with default, with corresponding payoffs zero.

The value function VE (dt−1yt−1, yt) in period t is

VE (dt−1yt−1, yt) = max
dt

u (ϕyt + btyt − dt−1yt−1) + θβE [VE (dtyt, yt+1)] , (10)

where the expectation is over period-t+ 1 output. The government chooses debt issuance dt and
corresponding proceeds bt to maximize the value function; (3) relates dt and bt.

Assuming CRRA utility u (c) = c1−γ/ (1− γ), we can rewrite the value function as

VE (dt−1yt−1, yt) = VE

(
dt−1yt−1

yt
, 1
)
y1−γ
t = vE (ωt) y1−γ

t , (11)

where ωt ≡ dt−1yt−1/yt denotes the stock of debt carried over from period t− 1 into period t,
expressed not as a fraction of period-t− 1 output as is dt−1 but as a fraction of period-t output.

6



This is because it is out of period-t output and not out of period-t− 1 that the debt dt−1yt−1

must be repaid. It is therefore ωtyt and not dt−1yt−1 that matters for the determination of
default in period t. Intuitively, even very high debt carried over from the previous period can be
serviced if growth between that period and the present has been very high. We refer to ω as the
realized debt ratio, in contrast to the promised debt ratio d. In a manner analogous to these
two ratios, vE (.) expresses the value function as a fraction of output; it decreases in realized
debt ωt raised in the previous period, to be repaid in the present.14

Using (10) and (11), we can write

vE (ωt) y1−γ
t = max

dt
u (ϕ+ bt − ωt) y1−γ

t + θβE
[
vE (ωt+1) y1−γ

t+1

]
⇔ vE (ωt) = max

dt
u (ϕ+ bt − ωt) + θβE

[
vE (ωt+1) g1−γ

t+1

]
, (12)

where ωt+1 ≡ dtyt/yt+1.
Substituting (4) and (5) into (12), we can write

vE (ωt) = max
gE,t+1

u

(
ϕ+ α+ bM

1 + r
gE,t+1 [1− F (gE,t+1)]− ωt

)
+ θβ

∫ ∞
gE,t+1

vE

(
(α+ bM ) gE,t+1

g

)
g1−γdF (g) , (13)

where we have used of both the i.i.d property of the growth rate and the fact that the payoff
remains zero after default, a consequence of the government’s loss of power following default
and its (senior) members’ ensuing retirement from politics.15

Proposition 1 Under the assumption βθE(g1−γ) < 1, the Bellman equation (13) satisfies the
Blackwell conditions for a unique solution g?E (ω). Given realized debt ratio ω, optimal debt
d?E (ω), borrowing proceeds b?E (ω), and default probability PD?

E (ω) are

d?E (ω) ≡ (α+ bM ) g?E (ω) , (14)

b?E (ω) ≡ α+ bM
1 + r

g?E (ω) [1− F (g?E (ω))] , (15)

PD?
E (ω) ≡ F (g?E (ω)) . (16)

A comparison of (5) and (13) suggests that d?E (ω) = dM , b?E (ω) = bM , and PD?
E (ω) = PDM ,

∀ω, if θ = 0.16 We show in Section 7.2 that this is indeed the case.
14That v′E (.) < 0 is immediate from (12) below.
15Specifically, we use

E
[
vE (ωt+1) g1−γ

t+1
]

= E
[
vE

(
dt
gt+1

)
g1−γ
t+1

]
= E

[
vE

(
dt
g

)
g1−γ

]
= E

[
vE

(
(α+ bM ) gE,t+1

g

)
g1−γ

]
=
∫ ∞
gE,t+1

{
vE

(
(α+ bM ) gE,t+1

g

)
g1−γ

}
dF (g) .

16The same is obviously true of β = 0, but this is not a realistic discount factor. In contrast, it is conceivable
for a government to be so unpopular as to be near-certain of being voted out of power, θ = 0.
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5 Optimal Debt under Strategic Default

For comparison purposes, we compute optimal debt in the case of strategic default. We mainly
follow Arellano (2008), which we modify slightly in order to exploit the growth rate’s i.i.d.
property.

We assume that a country whose government has defaulted strategically is excluded from
international financial markets for at least one period. At the end of that period, the country
escapes default and returns to financial markets with probability λ; with probability 1− λ, the
country remains in default for one additional period, at the end of which the ‘escape’ process
repeats itself. While it is in default, the country loses a fraction τ of its output. Thus, if the
country should be in default in period t in which output is yt, the country’s consumption would
be ϕ (1− τ) yt; ϕ = 1 for the altruistic government which maximizes the entire population’s
consumption: recall from our discussion in the Introduction that it is altruistic governments that
engage in strategic default.17 If in contrast the country should have access to financial markets
in that period, consumption would be

ϕyt +Bt −Dt−1 = ϕyt + btyt − dt−1yt−1.

Note that debt represents only external debt, as domestic debt constitutes neither a source of
funds nor a claim on funds for the country’s population considered in its entirety.

We denote VD (yt) the value function in default when output is yt and VS (dt−1yt−1, yt)
outside default; a country that eschews default must service the debt dt−1yt−1 carried over from
the previous period. We have

VD (yt) = u (ϕ (1− τ) yt) + θβE [λVS (0, yt+1) + (1− λ)VD (yt+1)] ,

where we have assumed that a country that has defaulted repudiates all outstanding debt; θ = 1
for the altruistic government that maximizes the discounted lifetime utility of the country’s
present and future generations.

Using utility’s CRRA form, u (c) = c1−γ/ (1− γ) and the growth rate’s i.i.d. property, we
can write

vDy
1−γ
t = (ϕ (1− τ) yt)1−γ

1− γ + θβE
[
λvS (0) y1−γ

t+1 + (1− λ) vDy1−γ
t+1

]
⇔ vD = ϕ1−γ (1− τ)1−γ

1− γ + θβE
[
λvS (0) g1−γ

t+1 + (1− λ) vDg1−γ
t+1

]

⇔ vD =
ϕ1−γ(1−τ)1−γ

1−γ + θλvS(0)
1+r E

[
g1−γ]

1− θ(1−λ)
1+r E [g1−γ ]

. (17)

The value function outside default is

VS (dt−1yt−1, yt) = max
{
VD (yt) ,max

dt
u (ϕyt + btyt − dt−1yt−1) + θβE [VS (dtyt, yt+1)]

}
.

17We include ϕ despite it being equal to one for comparison with the analysis of Section 4; we do likewise for θ
below.
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Making use of the CRRA assumption and defining ωt ≡ (dt−1yt−1) /yt, we can write

vS (ωt) = max
{
vD,max

dt
u (ϕ+ bt − ωt) + θβE

[
vS (ωt+1) g1−γ

t+1

]}
. (18)

As in the case of excusable default, we need to determine the relation between the face value of
zero coupon debt raised in period t and due in period t+ 1, dtyt, and its corresponding proceeds
in period t, btyt. For that purpose, we need to determine the range of realized debt ratios for
which the government chooses to service its debt in period t+ 1, that is, the range of debt ratios
ωt+1 such that vS (ωt+1) > vD. We define ωS to be the maximum such ratio, vS (ωS) = vD; ωS
does not depend on t because of the i.i.d. distribution of the growth rate g; it is a maximum
because v′S (.) < 0 from (18). We refer to ωS as maximum feasible debt (MFD). Default occurs
over the range of debt ratios ωt+1 > ωS , that is, over the range of growth rates such that

dt
gt+1

> ωS

⇔ gt+1 <
dt
ωS
≡ gS,t+1. (19)

We can therefore write
dt = ωSgS,t+1 (20)

and
bt = dt

1 + r
Pr [gt+1 > gS,t+1] = ωS

1 + r
gS,t+1 [1− F (gS,t+1)] . (21)

Substituting (20) and (21) into (18), we can write

vS (ωt) = max
{
vD, max

gS,t+1
u

(
ϕ+ ωS

1 + r
gS,t+1 [1− F (gS,t+1)]− ωt

)

+ θβ

[∫ gS,t+1

0
vDg

1−γdF (g) +
∫ ∞
gS,t+1

vS

(
ωSgS,t+1

g

)
g1−γdF (g)

]}
. (22)

A comparison of (13) and (22) that abstracts from the value of default vD reveals the close
resemblance between the two maximizations: the latter has ωS replace α+ bM in the former.
This suggests that any difference between optimal values we obtain will be due in the first
instance to the difference between maximal values under excusable and strategic default. We
show in Section 8.1 that this is indeed the case.

We solve the Bellman equation (22) for g?S(ω). Given realized debt ratio ω, optimal debt
d?S(ω), borrowing proceeds b?S(ω), and default probability PD?

S(ω) are

d?S(ω) ≡ ωSg?S(ω), (23)

b?S(ω) ≡ ωS
1 + r

g?S(ω) [1− F (g?S(ω))] , (24)

PD?
S(ω) ≡ F (g?S(ω)) . (25)
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6 Parametrization

We parametrize our model using Euro Area data. We choose the Euro Area over the United
States, the United Kingdom, or Japan because our model assumes no central bank intervention
in government debt markets; this assumption is arguably more true of the European Central
Bank than it is of the Federal Reserve, the Bank of England, or the Bank of Japan.18 We
assume the output growth process to be log-normally distributed. We set its mean and standard
deviation to match those of Euro Area per-capital output over the period 1990-2013, µ = 1.02%
and σ = 2.12%; per-capita output is obtained from the (Euro) Area Wide Model Database. We
set the interest rate r equal to the real government bond yield for the Euro Area over that same
period, r = 1.04%; it is obtained from the IMF’s International Financial Statistics. In accordance
with IMF (2011) estimates, we set the maximum primary surplus equal to 5% of GDP; α = 0.05.
We set the fraction of output that is of concern to the self-interested government that engages
in excusable default ϕ = 0.5; this is somewhat higher than the ratio of government spending
to GDP because the government may be concerned with part of private spending – that by its
favored constituents for example – in addition to public spending; we set ϕ = 1 for the altruistic
government that engages in strategic default. We set θ = 0.6 in the case of excusable default
and θ = 1 in that of strategic default; in the former case, the probability of remaining in power
θ concedes a moderate advantage to the government over the opposition. We follow Arellano
(2008) in setting the probability of escaping default to 73.4%; λ = 0.734.19 We follow Aguiar
and Gopinath (2006) in setting the loss of output in default equal to 2% of GDP; τ = 0.02. In
accordance with much of the growth literature, we set the discount factor β = 0.95. Finally, we
set the CRRA coefficient γ = 0.5.20 Table 1 shows the various parameter values, distinguishing
between the two cases of excusable and strategic default.

We use a value-iteration procedure to solve the Bellman equations (13) and (22). We then
use the decision rules (14)-(16) and (23)-(25) to generate through simulation three time series –
debt-to-GDP, borrowing proceeds-to-GDP, and default probability – for each of the two cases of
excusable and strategic default. We compute the average values of each of these times series,
repeat the procedure 1,000 times, and average the results again to obtain the averages d?E , b?E ,
and PD∗E for excusable default and vD, ωS , d?S , b?S , and PD∗S for strategic.21

18Note that we do not need to assume a single government choosing public debt for the entire Euro Area. Our
analysis can be viewed as averaging the choices made by the different governments of the individual Euro Area
countries.

19As noted in Footnote 5, 0.734 is the annual equivalent to Arellano’s (2008) quarterly 0.282.
20Our CRRA coefficient is bounded above by 1. To see why this is the case, note that the senior members of

a government than has engaged in excusable default have zero payoff, as they are assumed never to return to
power. A γ larger than 1 would result in the paradoxical situation in which governments would consistently be
better off in default, for the zero payoff of default would then be higher than the negative payoff of debt service
(c1−γ/ (1− γ) < 0 if c > 0 and γ > 1).

21No simulation is needed to compute dM , bM , or PDM .
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7 Results: Excusable Default

7.1 Basic Results

Table 2 shows the results for excusable default. Our main interest is in the results in the first
row, which use the parameter values for excusable default (ϕ = 0.5 and θ = 0.6). Maximum
sustainable debt dM is 83.2% of GDP, maximum sustainable borrowing bM is 81.8%. The very
small difference between MSD and MSB is due to the low risk-free interest rate, r = 1.04%, and
the very low probability of default at MSD, PDM = 0.765%. This very low probability in turn
reflects the low volatility of growth, σ = 2.12%, which implies an extremely steep transition
from near-zero to near-one probability of default PD as a function of the face value of debt d
(see Figure 1). Any face value of debt other than one associated with a very low probability of
default would therefore see a collapse in borrowing proceeds. This is confirmed by the Laffer
curve in Figure 2, which shows a dramatic decline in borrowing proceeds b past MSD dM .22

The very high MSD, at least in comparison to the values generally obtained under strategic
default, reflects the government’s high debt service capacity, which under excusable default
constitutes the primary determinant of maximum sustainable debt: there can be no excusable
default when the government has the capacity to service debt. A government’s debt service
capacity in turn depends on the maximum primary surplus, the risk-free interest rate, the growth
rate, and the ability repeatedly to raise new debt, which in the absence of default effectively serves
to make all future primary surpluses available for the repayment even of debt of maturity only
one year. As the probability of default is very low at MSD (PDM = 0.765%), new debt can be
counted upon with near certainty, and MSD is raised far above MPS (dM = 83.2%� 5% =MPS).
We examine the sensitivity of MSD to the maximum primary surplus, the risk-free interest rate,
and the growth rate below.

Optimal sovereign debt d?E equals 82.1% of GDP; it is extremely close to MSD dM . To
understand this result, recall from Section 3 that MSD is the level of debt that maximizes
borrowing proceeds; it would therefore be chosen by governments concerned only with the current
payoff, that is, governments for which θ = 0. As such is not the case, a governments who wishes
to avoid jeopardizing future payoffs through debt-induced default chooses a level of debt lower
than MSD. This consideration fails to decrease optimal debt markedly below maximal, however,
because the probability of default PDM at MSD is very small already: even a level of debt very
close to MSD has very low probability of default. The government consequently chooses optimal
debt close to MSD, which represents the most advantageous trade-off between payment promised
and proceeds received, the apex of the Laffer curve in Figure 2. The probability of default at
optimal debt is extremely low, PD?

E = 0.106%; it combines with the low risk-free interest rate
to make optimal borrowing proceeds b?E very close to optimal debt d?E , b?E = 81.2% of GDP.

Recall that our model is calibrated to the Euro Area. Euro Area public debt now stands at
92% of GDP, close to but nonetheless larger than computed MSD at 83.2% and optimal debt at

22In order further to highlight the importance of low volatility to the steepness of the transitions in default
probability and borrowing proceeds, Figures 1 and 2 show the case σ = 21.2% in addition to σ = 2.12%.
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82.1%.
The results in the second to fourth rows are obtained by replacing one or both parameter

values for excusable default by those for strategic default (ϕ = 1 and θ = 1).23 They are of
interest mainly in that optimal debt d?E , proceeds b?E , and probability of default PD?

E are to be
compared with the results in Section 8 computed under strategic default, obtained with the same
parameter values. Clearly, MSD dM , MSB bM , and probability of default PDM are unaffected
by the changes in ϕ and θ, as maximum debt is computed independently of any concern for
future payoffs.24 In contrast, optimal debt d?E , proceeds b?E , and probability of default PD?

E all
decrease as compared to their earlier values, reflecting the now greater importance attached
to future payoffs. This is immediate for θ, perhaps slightly less so for ϕ: the concavity of the
utility function implies that ϕ and borrowing proceeds are strategic substitutes; an increase in
ϕ therefore decreases optimal debt further away from maximum debt both by decreasing the
benefits to be had from increased proceeds in the current period and by increasing the payoff to
avoiding default in the next period.25 Reassuringly, changes in values are largest when both
parameter values are changed.26

7.2 Sensitivity Analysis

Figures 3a to 4d show the sensitivity of maximum and optimal debt and their corresponding
proceeds and associated probabilities of default to the exogenous parameters. Figures 3a, 4a, 4b,
and 4c confirm the importance of the MPS, the risk-free interest rate, and the mean and volatility
of the growth rate to MSD. MSD increases from 40 to 160% of GDP as MPS α increases from
2.5 to 10% of GDP; it increases from 75 to 110% of GDP as the mean growth rate µ increases
from 1.5 to 2.5%: a government that generates a higher primary surplus from a faster growing
economy has more resources available for debt service; it can therefore borrow more.27 MSD
decreases from 90 to 65% of GDP as the risk-free interest rate varies over the same interval as µ:
a higher opportunity cost of capital decreases lenders’ willingness to lend to the government,
which consequently can borrow less. MSD decreases from 115 to 70% of GDP as the volatility of
the growth rate σ increases from 1.5 to 2.5%, the same interval as µ: the more volatile is growth,
the greater the likelihood of low growth realizations that leave the government unable to service
its debt, the less the government can borrow.

In line with our discussion above, optimal debt d?E closely tracks MSD dM . This is a
consequence of the very low probabilities of default at MSD, never above 1% over the ranges
considered; the probabilities of default at optimal debt are lower still, rarely exceeding 0.2%.
Note that PDM is invariant in MPS α, the mean growth rate µ, and the risk-free interest rate r;
this is an artifact of growth’s lognormal distribution and zero recovery: changes in parameter

23The results in the last row will be discussed in Section 9.
24Formally, equations (7), (8), and (9) involve neither θ nor ϕ.
25See (12) and note that vE (ωt+1) in E

[
vE (ωt+1) g1−γ

t+1
]

is itself an increasing function of ϕ.
26Changes in d?E , b?E , and PD?

E are greater between the first row and the fourth (ϕ and θ changed) than between
the first row and the second or third rows (ϕ or θ changed, respectively).

27The numbers reported are rounded for ease of readability.
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values that should be accommodated in both the size of debt and its riskiness are accommodated
only by the former, leaving the latter unchanged.28 As expected, PDM increases in volatility σ,
reflecting the higher probability of default associated with more volatile growth. The probability
of default PD?

E generally follows optimal debt d?E , increasing where d?E increases (α and very
slightly µ) and decreasing where d?E decreases (very slightly r). That PD?

E (very slightly)
increases in volatility σ despite the decrease in d?E suggests that the direct effect of σ on PD?

E

dominates its indirect effect through the decreasing d?E . Turning to borrowing proceeds bM and
b?E , we note that these follow the same pattern as debt, from which they differ only very little
by virtue of the low risk-free interest rate and probabilities of default.

In Figures 3b, 3c, 3d, and 4d, maximum debt dM , proceeds bM , and probability of default
PDM do not change. This is because the parameters ϕ, γ, θ, and β pertain to a trade-off
between present and future payoffs that has no relevance for maximum debt. This trade-off
is, however, central to optimal debt d?E , which decreases in all four parameters: as noted in
Section 7.1, an increase in ϕ or θ increases the relative importance of future payoffs, which are
not to be jeopardized by default; the same is true of an increase in β; an increase in γ increases
the desirability of smoothing consumption over time, with future consumption again not to be
jeopardized through default. The probability of default PD?

E is decreased by decreasing optimal
debt d?E , with attending decrease in optimal proceeds b?E . Their diverging paths notwithstanding,
maximum and optimal debt and borrowing remain close in value. Again, this is due to the very
low probability of default at maximum debt: there is little need for optimal debt d?E markedly to
deviate from maximum debt dM for the probability of default at optimal debt PD?

E to be very
small. This can be seen in Figure 3d for example, where as θ increases from 0 to 1, the difference
between dM and d?E increases from zero to 3%, and the probability of default at optimal debt
PD?

E decreases to become effectively nil.29 This suggests that optimal debt’s deviation from the
tracking of maximum debt is confined to a very narrow range.

8 Results: Strategic Default

8.1 Basic Results

Table 3 shows the results for strategic default. As in Section 7.1, our main interest is in the
results in the first row, which use the parameter values for strategic default (ϕ = 1 and θ = 1).
The realized debt ratio beyond which the government defaults, maximum feasible debt MFD, is
extremely small, ωS = 2.876% of GDP. This result is a consequence of the growth rate’s very

28Formally, consider gM and g in (8) and define xM ≡ [log (gM )− µ] /σ and x ≡ [log (g)− µ] /σ. Use the
lognormality of F (.) to rewrite (8) as

xM = arg max
x

exp (µ+ σx) [1− Φ (x)]

= arg max
x

exp (σx) [1− Φ (x)] .

Clearly, PDM = Φ (xM ) depends exclusively on σ.
29That d?E = dM , b?E = bM , and PD?

E = PDM at θ = 0 in Figure 3d confirms the observation made after
Proposition 1.
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low volatility: as noted by Aguiar and Gopinath (2006) and Aguiar and Amador (2012), there
is relatively little value to the insurance provided by borrowing when there is little volatility
in output; there is therefore relatively little to restrain a government behaving strategically
from defaulting; default occurs at low debt ratios. This is especially so under the present
parametrization, because the proportional cost of default at τ = 2% of GDP is low and the
probability of escaping default at λ = 73.4% is high. Optimal debt d?S = 2.698% of GDP is
very close to ωS , yet its associated probability of default, the probability that growth be less
than d?S/ωS , is very low, PD?

S = 0.026%. Again, this is due to the very low volatility of growth;
again, the low probability of default at optimal debt and the low interest rate combine to
make optimal borrowing proceeds very close to optimal debt, b?S = 2.669% of GDP. Optimal
debt d?S is close to MFD ωS for reasons similar to those discussed in Section 7, namely the
desirability of maximum proceeds, mitigated only weakly by concern for future payoffs because
of the low probability of default. That both forms of default see a very small difference between
maximum (dM , ωS) and optimal (d?E , d?S) debt suggests that the difference between strategic
and excusable default pertains not to the desirability of high debt levels but to their feasibility.
This confirms the observation made towards the end of Section 5 that the difference between
optimal debt under excusable and strategic default is first and foremost a consequence of the
difference between maximal debt in these two cases. While part of the difference in optimal
debt values must be attributable to the distinction between excusable default’s total debt
and strategic default’s foreign debt, such distinction is very unlikely to account for the entire
d?E − d?S = 82.1%− 2.7% = 79.4% difference: neither the Euro Area as as a whole nor individual
Euro Area countries have 97% (= 79.4%/82.1%) of their public debt held by non-nationals.

The results in the second to fourth rows are obtained by replacing one or both parameter
values for strategic default by those for excusable default (ϕ = 0.5 and θ = 0.6). All values
computed have the same order of magnitude as the values in the first row, with the exception
of the probability of default at optimal debt PD?

S in the case θ = 0.6. This confirms, if there
were the need to do so, that the order of magnitude difference between the values computed
in Section 7 and 8 is due not to different parameter values but to the different assumptions
regarding default.

Changes in ϕ and θ have two effects on debt and borrowing, one direct and the other indirect
through the default payoff vD in (17). The direct effect of the decrease in ϕ and θ is to decrease
the importance attached future payoffs, thereby weakening the restraint on the government to
engage in strategic default, possibly leading to a decline in maximum feasible debt and optimal
debt and borrowing. The indirect effect through vD is opposite, as the lower vD that results
from the decrease in ϕ and θ strengthens the restraint.30 The decrease in debt and borrowing
that results from the decrease in ϕ alone suggests that the direct effect dominates in that case;
in contrast, the increase in debt and borrowing that results from the decrease in θ alone suggests
that the indirect effect dominates in that other case. When both ϕ and θ decrease, the direct

30The last column of Table 3 shows the decrease in vD that results from the decreases in ϕ and θ.
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effect appears to dominate (just). Somewhat surprisingly, the offsetting effect of ϕ on θ does
not extend from debt and borrowing to the probability of default at optimal debt: PD?

S is the
same in the third and fourth rows. This can be ascribed to the much greater sensitivity of PD?

S

to θ than to ϕ over the range of values considered, as will be seen in the sensitivity analysis of
Section 8.2 below.

8.2 Sensitivity Analysis

Figures 5a to 6d show the sensitivity of maximum feasible debt ωS , optimal debt d?S , optimal
borrowing proceeds b?S , and the probability of default at optimal debt PD?

S to the exogenous
parameters. Figure 5a confirms our interpretation in Section 8.1 of the results in the third
row of Table 3. As argued then, an increase in the fraction of output that is of concern to the
government ϕ increases the importance attached future payoffs; it therefore serves to restrain the
government from engaging in strategic default (direct effect), unless offset by the increase of vD
in ϕ (indirect effect). The direct effect dominates; it increases both ωS and d?S , the latter closely
tracking the former. It also increases b?S , but leaves PD?

S essentially unchanged. This suggests
that changes in the extent to which strategic default is restrained sometimes are accommodated
along a single margin, the level of debt in the present case, rather than along the two possible
margins that are the debt level and the default probability.

Figure 5b illustrates a case in which both the direct and indirect effects combine to weaken
the restraint on the government to engage in strategic default. A larger probability of escaping
default decreases the cost of default, thereby weakening the restraint on the government and
decreasing maximum and optimal debt and borrowing. This direct effect is compounded by the
indirect effect through vD, as the default payoff is shown in Figure 7 to increase in λ. As for ϕ,
accommodation proceeds along the debt-level margin alone: PD?

S is unchanged.
Much the same phenomenon is at work in Figure 5c, albeit in the opposite direction: A

larger loss of output in default increases the cost of default, thereby strengthening the restraint
on the government and increasing maximum and optimal debt and borrowing. This direct effect
is compounded by the indirect effect through vD, as the default payoff is shown in Figure 7
to decrease in τ . Although PD?

S is essentially unchanged, it initially very slightly decreases,
thereby constituting one instance in which a change in restraint is accommodated along the two
margins of debt level and default probability.

An increase in risk-aversion γ has barely an effect on the variables of interest (Figure 5d), as
do increases in the interest rate r (Figure 6b) and in the mean growth rate µ (Figure 6c). The
decrease of debt and borrowing in the importance of future payoffs θ (Figure 6a) suggests that,
over the range of values considered at least, the indirect effect of θ through vD dominates the
direct effect: the restraint is weakened despite the greater importance attached future payoffs;
debt, borrowing, and the probability of default decrease. Note that the sensitivity of PD?

S to
θ dwarfs that to all other parameters.

Figure 6d is interesting in that it is one for which the change in optimal debt and borrowing
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diverges from that of the probability of default. The essentially unchanged maximum feasible debt
suggests that the restraint on the government is unchanged, perhaps because the strengthening
direct effect and the weakening indirect effect cancel each other (higher volatility further
endangers future payoffs through increased default; it increases the default payoff through a
higher expected growth rate).31 Absent a change in maximum debt, optimal debt decreases to
account for the now larger possibility of default, but not so much as to prevent an increase in
the probability of default.

9 Growth Collapses

We now add the possibility of growth collapses (Rietz, 1988; Barro, 2006; Barro and Ursua,
2011). Specifically, we assume

log (g) = µ+ u− z;

u and v are mutually independent, u ∼ N(0, σ2), and

v =
{
z with probability p
0 with probability 1− p

where z is distributed as

f(z) =
{
ρe−ρ(z−z0) if z > z0.

0 otherwise.

We set p = 0.01, ρ = 4.5, z0 = − log(1 − 0.095); µ and σ remain as before. There is a 1%
probability that there be a growth collapse; collapse, if it should occur, involves a decline in
GDP of at least 9.5% and is exponentially distributed with rate 4.5.

The calibrated values are shown in the second row of Table 2. As expected, maximum and
optimal debt and borrowing decrease whereas default probabilities increase. The government
adjusts along the two available margins to the possibility of a growth collapse that would leave
the government with insufficient resources to service its debt; the first margin will be recalled to
be the debt level, the second the default probability. The probability of default at optimal debt
is now PD?

E = 0.953%, representing a one in a century frequency of default; optimal debt is
d?E = 67.8%, MSD is dM = 71.5%.

Figure 8 shows the sensitivity of maximum and optimal debt and their corresponding proceeds
and associated probabilities of default to the rate of the distribution ρ, the probability that
there be a collapse in growth p, and the minimum decline in output such collapse involves z0.
Panel (a) shows that the rate of the distribution has practically no effect on debt and borrowing.
There is a slight decrease in the probability of default at optimal debt, reflecting a very slight
increase in the ability to forestall default even if there should be a collapse in growth when losses
become more concentrated at their 9.5% lower bound. Panel (c) shows that increasing that
lower bound from zero to 10% decreases debt and proceeds and increases the default probability;
surprisingly perhaps, this does not extend beyond 10%: once the collapse in growth is such that

31Recall that E [g] = exp
(
µ+ σ2/2

)
for g lognormally distributed.
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default occurs, the ability repeatedly to raise new debt to servicing existing debt is lost, how
large the collapse in growth is beyond this level does not matter. This suggests that it is the
occurrence rather than the extent of default that matters.

This intuition is confirmed by Panel (b), which shows the variation of the values of interest
in the probability p that collapse occurs. There is now a marked decrease in debt and borrowing,
and a marked increase in default probabilities as collapse becomes more likely. Lenders react to
the greater probability of collapse by requiring a higher implicit interest rate (the ratios dM/bM
and d?E/b

?
E increase from 1.024 to 1.044 and from 1.015 to 1.035, respectively, as p increases

from 0.5% to 2.5%; see Figure 9). The government responds along the two margins of quantity
and quality, issuing less and riskier debt.

10 The United States

We briefly compute for the United States the values we have computed for the Euro Area. We set
the real interest rate r to match the return on 1-year Treasury bonds over the period 1955-2014
(series GS1 in FRED), net of the GDP deflator (GDPDEF in FRED); r = 1.85%. We set the
output process to match the mean and volatility of per-capital output (A939RX0Q048SBEA);
µ = 1.94% and σ = 2.13%. The results are shown in Table 4. Those in the first row can be
interpreted in light of the sensitivity analysis of Section 7.2, Figures 4a and 4b in particular: the
US’s larger mean growth rate µ increases maximum and optimal debt and proceeds; the US’s
larger interest rate r dampens such increase. The probabilities of default at MSD and at optimal
debt are essentially unchanged, reflecting these probabilities’ practically nil sensitivity to µ and
r. The volatility of the growth rate being essentially the same in the Euro Area and the United
States, it likely plays no role in the present comparison. The results in the second row, which
pertain to the case of a collapse in growth, can by and large be interpreted in a manner similar
to those in the first row.

US public debt stands at around 100% of GDP, 15% above dM = 85% and 16% above
d∗E = 84%. That the Fed holds about 15% of US public debt is a – welcome – coincidence. It
was not part of the calibration of the model.

11 Conclusion

We have revisited the issue of optimal sovereign debt, assuming self-interested governments
engaging in excusable default where most previous work had assumed benevolent governments
engaging in strategic defaults. Our assumption of self-interested government is more in accordance
with the Public Choice Theory of government than is the alternative assumption of benevolent
government; our assumption of excusable default is in accordance with extensive empirical
evidence that documents governments’ extreme reluctance to default: governments are no doubt
mindful of the loss of power that generally follows default.

Our calibrated optimal debt level (81% of GDP) is well above those obtained under the
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assumption of strategic default (ranging from 1% to 38%), and much closer to those observed in
practice (often exceeding 100%). Lenders more readily lend to governments they expect to do
their utmost to avoid default than to governments they fear continuously trade off the costs and
benefits of default; governments exploit such readiness to reach optimal debt levels only very
slightly below those of maximum sustainable debt (MSD). The very low probability of default
at MSD, a consequence of the very low volatility of growth, keeps optimal debt close to MSD,
which to a borrowing government represents the most advantageous trade-off between payment
promised and proceeds received.

We have found optimal debt to be most sensitive to a country’s maximum primary surplus,
the mean and volatility of its growth rate, and the interest rate. Incorporating the possibility of
growth collapses in our calibration, we have raised the probability of default at optimal debt from
an implausibly low 0.106% to a much more realistic 0.953%, corresponding to a one in a century
frequency of default for an advanced economy such as the US. The now lower optimal debt at
67.8% and MSD at 71.5%, much below prevailing debt levels, suggest the need to incorporate
governments’ ability to direct central banks’ purchases of government debt into our analysis.
We leave such extension to future work.
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A Tables

Table 1: Parameter Values

r (%) µ (%) σ (%) α ϕ θ λ τ γ β

Excusable Default 1.04 1.02 2.12 0.05 0.50 0.60 NA NA 0.50 0.95
Strategic Default 1.04 1.02 2.12 NA 1.00 1.00 0.734 0.02 0.50 0.95

Note: NA stands for Not Applicable. Data on output growth are obtained from the Area Wide Model
database, Data for the interest rate are obtained from the International Finance Statistics database
from the International Monetary Fund, and correspond to the Government bond yields for the euro
area. The sample ranges from 1990 to 2013.

Table 2: Excusable Default

ϕ θ dM (%) d?E (%) bM (%) b?E (%) PDM (%) PD?
E (%)

Excusable 0.50 0.60 83.222 82.083 81.733 81.151 0.765 0.106
Excusable 1.00 0.60 83.222 81.815 81.733 80.921 0.765 0.062
Excusable 0.50 1.00 83.222 79.924 81.733 79.099 0.765 0.001
Excusable 1.00 1.00 83.222 79.679 81.733 78.857 0.765 0.000
Collapse 0.50 0.60 71.533 67.822 69.551 66.483 1.757 0.953

Note: The subscript M denotes maximum values, the superscript ? denotes optimal values. The Growth Collapse
model assumes that the growth process takes the form g = µ+ u− z, where z > 0 with probability p and 0 with
probability 1− p. When positive, z has pdf f(z) = ρ exp(−ρ(z− z0)) if z > z0, 0 otherwise. In the application, we
set p = 0.01, ρ = 4.5 and z0 = − log(1− 0.095) implying that only GDP drops of more than 9.5% are considered
collapses (see Barro (2006) and Barro and Ursua (2014)).

Table 3: Strategic Default

ϕ θ ωS (%) d?S (%) b?S (%) PD?
S (%) vD

1.00 1.00 2.876 2.698 2.669 0.026 44.343
0.50 1.00 1.443 1.353 1.339 0.026 31.356
1.00 0.60 4.539 4.321 4.263 0.296 4.680
0.50 0.60 2.275 2.162 2.133 0.296 3.310
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Table 4: Excusable Default (US Calibration)

ϕ θ dM (%) d?E (%) bM (%) b?E (%) PDM (%) PD?
E (%)

Excusable 0.50 0.60 85.534 84.360 83.336 82.740 0.768 0.106
Collapse 0.50 0.60 73.481 70.328 70.879 68.379 1.757 0.973

Note: In this calibration, r = 1.85%, µ = 1.94% and σ = 2.13%. The subscript M denotes maximum values,
the superscript ? denotes optimal values. The Growth Collapse model assumes that the growth process takes
the form g = µ + u − z, where z > 0 with probability p and 0 with probability 1 − p. When positive, z
has pdf f(z) = ρ exp(−ρ(z − z0)) if z > z0, 0 otherwise. In the application, we set p = 0.01, ρ = 4.5 and
z0 = − log(1− 0.095) implying that only GDP drops of more than 9.5% are considered collapses (see Barro (2006)
and Barro and Ursua (2014)).
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B Figures

Figure 1: Probability of Default PD
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Figure 2: Borrowing proceeds b
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Figure 3: Sensitivity Analysis: Excusable Default Model (I)
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Figure 4: Sensitivity Analysis: Excusable Default Model (II)
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Figure 5: Sensitivity Analysis: Strategic Default Model (I)
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Figure 6: Sensitivity Analysis: Strategic Default Model (II)
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Figure 7: Equilibrium Default Payoff vD
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Figure 8: Sensitivity Analysis: Excusable Default Model with Disasters

(a) Variation in ρ

2 4 6 8 10 12 14 16 18 20

ρ

66

68

70

72

74

Face Value of Debt

2 4 6 8 10 12 14 16 18 20

ρ

66

68

70

72

74

Borrowing Proceeds

2 4 6 8 10 12 14 16 18 20

ρ

0.0

0.5

1.0

1.5

2.0
Default Probability

(b) Variation in p

0.005 0.010 0.015 0.020 0.025

p

50

55

60

65

70

75

80
Face Value of Debt

0.005 0.010 0.015 0.020 0.025

p

50

55

60

65

70

75

80
Borrowing Proceeds

0.005 0.010 0.015 0.020 0.025

p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Default Probability

(c) Variation in z0

0.05 0.10 0.15 0.20 0.25
z0

66

68

70

72

74

Face Value of Debt

0.05 0.10 0.15 0.20 0.25
z0

66

68

70

72

74

Borrowing Proceeds

0.05 0.10 0.15 0.20 0.25
z0

0.0

0.5

1.0

1.5

2.0
Default Probability

Maximum, Optimal

30



Figure 9: Excusable Default Model with Growth Collapses, Debt/Proceeds Ratio
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C Proofs

Proof of Proposition 1 Define the operator T such that

T (vE)(ω) = max
gE

u
(
ϕ+ α+ bM

1 + r
gE(1− F (gE))− ω

)
+ βθ

∫ ∞
gE

vE

(
(α+ bM )gE

g

)
g1−γdF (g)

Proving that the Bellman equation satisfies the Blackwell condition involves proving that it satisfies both the

monotonicity and the discounting properties.
Monotonicity: Consider two candidate solutions v and w, such that v(ω) 6 w(ω); denote g?V and g?W their

corresponding maximizers. We have

T (v)(ω) = u
(
ϕ+ α+ bM

1 + r
g?V (1− F (g?V ))− ω

)
+ βθ

∫ ∞
g?
V

v

(
(α+ bM )g

?
V

g

)
g1−γdF (g)

6 u
(
ϕ+ α+ bM

1 + r
g?V (1− F (g?V ))− ω

)
+ βθ

∫ ∞
g?
V

w

(
(α+ bM )g

?
V

g

)
g1−γdF (g)

6 u
(
ϕ+ α+ bM

1 + r
g?W (1− F (g?W ))− ω

)
+ βθ

∫ ∞
g?
W

w

(
(α+ bM )g

?
W

g

)
g1−γdF (g)

= T (w)(ω),

which establishes monotonicity.
Discounting: Let a be a strictly positive constant. We have

T (v + a)(ω) = max
gE

u
(
ϕ+ α+ bM

1 + r
gE(1− F (gE))− ω

)
+ βθ

∫ ∞
gE

(
vE

(
(α+ bM )gE

g

)
+ a

)
g1−γdF (g)

6 max
gE

u
(
ϕ+ α+ bM

1 + r
gE(1− F (gE))− ω

)
+ βθ

∫ ∞
gE

vE

(
(α+ bM )gE

g

)
g1−γdF (g)

+ amax
gE

βθ

∫ ∞
gE

g1−γdF (g)

= T (v)(ω) + amax
gE

βθ

∫ ∞
gE

g1−γdF (g).

As d
dgE

∫∞
gE
g1−γdF (g) < 0, we have

max
gE

∫ ∞
gE

g1−γdF (g) <
∫ ∞

0
g1−γdF (g) = E(g1−γ).

A sufficient condition for discounting is therefore that βθE(g1−γ) < 1. �
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D Solution Method

D.1 Excusable Default Model

Solving the excusable default model amounts to solving the Bellman equation

vE (ωt) = max
gE,t+1

u
(
ϕ+ α+ bM

1 + r
gE,t+1 [1− F (gE,t+1)]− ωt

)
+ θβ

∫ ∞
gE,t+1

vE

(
(α+ bM ) gE,t+1

g

)
g1−γdF (g) .

Using the assumption that growth is log-normally distributed, we can rewrite the Bellman equation as

vE (ωt) = max
xE,t+1

(
ϕ+ α+bM

1+r exp(µ+ σxE,t+1)(1− Φ(xE,t+1))− ωt
)1−γ

1− γ

+ θβ

∫ ∞
xE,t+1

vE ((α+ bM ) exp(σ(xE,t+1 − x))) exp((1− γ)(µ+ σx))dΦ (x) ,

where x ≡ (log (g)− µ) /σ and xE,t+1 ≡ (log (gE,t+1)− µ) /σ. The preceding involves the computation of the
integral

I(xE) =
∫ ∞
xE

vE ((α+ bM ) exp(σ(xE − x))) exp((1− γ)(µ+ σx))dΦ (x)

= exp((1− γ)µ)√
2π

∫ ∞
xE

exp((1− γ)σx)vE ((α+ bM ) exp(σ(xE − x))) exp(−x2/2)dx

= exp((1− γ)(µ+ σxE))√
2π

∫ ∞
0

exp((1− γ)σs)vE ((α+ bM ) exp(−σs))) exp(−(s+ xE)2/2)ds,

where s ≡ x− xE . Multiplying and dividing by exp(−s), we obtain

I2(xE) = exp((1− γ)(µ+ σxE))√
2π

∫ ∞
0

ψ(s;xE) exp(−s)ds,

where
ψ(s;xE) = exp((1 + (1− γ)σ)s− (s+ xE)2/2)v ((α+ bM ) exp(−σs))) ,

which is evaluated using a Gauss-Laguerre quadrature method.

The algorithm is then as follows

1. Set a grid of values for ω: Ω = {ω1, . . . , ωn}, and a grid for xE , Ξ = {xE1, . . . , xEm}. Use 1,000 grid points

for Ω and 20,000 grid points for Ξ.

2. Conjecture a value function vE,i(ω), i = 0.

3. Given the value function conjectured at iteration i, evaluate

Ψ(ω, xE) =
(
ϕ+ α+bM

1+r exp(µ+ σxE,t+1)(1− Φ(xE,t+1))− ωt
)1−γ

1− γ + θβI(xE),

for each pair (ω, xE) ∈ (Ω×Ξ), where integrals are evaluated using a 100 nodes Gauss-Laguerre quadrature

method.

4. Find Ψ?(ω) = max
xE

Ψ(ω, xE) and the associated x?E(ω) = argmaxxE Ψ(ω, xE) on the grid and update the

value function
vE,i+1(ω) = T (vE,i) (ω) = Ψ?(ω).

5. If EE = ‖vE,i+1(ω)− vE,i(ω)‖∞ < ε, ε > 0, then stop, else go back to 3.
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After having achieved convergence, compute

g?E (ω) = exp(µ+ σx?E(ω)),
d?E (ω) = (α+ bM ) exp(µ+ σx?E(ω)),

b?E (ω) = α+ bM
1 + r

exp(µ+ σx?E(ω)) [1− Φ (x?E (ω))] ,

PD?
E (ω) = Φ (x?E (ω)) .

D.2 Strategic Default model

Solving the strategic default model amounts to solving the system of equations

vS(ωt) = max

{
vD, max

gS,t+1

(
ϕ+ ωS

1+r gS,t+1(1− F (gS,t+1))− ωt
)1−γ

1− γ

+ βθ

[∫ gS,t+1

0
vDg

1−γdF (g) +
∫ ∞
gS,t+1

vS

(
ωS

gS,t+1

g

)
g1−γdF (g)

]}
,

vD = (ϕ(1− τ))1−γ

1− γ + βθ

∫ ∞
0

λvS(0)g1−γ + (1− λ)vDg1−γdF (g),

vS(ωS) = vD.

Using the assumption that growth is log-normally distributed, we can rewrite the system of equation as

vS(ωt) = max

{
vD, max

xS,t+1

(
ϕ+ ωS

1+r exp(µ+ σxS,t+1)(1− Φ(xS,t+1))− ωt
)1−γ

1− γ

+ βθ

[
vD

∫ xS,t+1

−∞
exp((1− γ)(µ+ σx))dΦ(x)

+
∫ ∞
xS,t+1

vS (ωS exp(σ(xS,t+1 − x))) exp((1− γ)(µ+ σx))dΦ(x)
]}

vD = (ϕ(1− τ))1−γ

1− γ + βθ(λvS(0) + (1− λ)vD) exp
(

(1− γ)µ+ (1− γ)2 σ
2

2

)
vS(ωS) = vD,

where x ≡ (log (g)− µ) /σ and xS,t+1 ≡ (log (gS,t+1)− µ) /σ. The preceding involves the computation of the two
integrals

I1(xS) =
∫ xS

−∞
exp((1− γ)(µ+ σx))dΦ(x),

I2(xS) =
∫ ∞
xS

vS (ωS exp(σ(xS − x))) exp((1− γ)(µ+ σx))dΦ(x).

Using the explicit form of the normal distribution, it is straightforward to compute the first integral

I1(xS) = exp
(

(1− γ)µ+ (1− γ)2 σ
2

2

)
Φ (x− (1− γ)σ) .

Now turn to the second integral. We have

I2(xS) =
∫ ∞
xS

vS (ωS exp(σ(xS − x))) exp((1− γ)(µ+ σx))dΦ(x)

= exp((1− γ)µ)√
2π

∫ ∞
xS

exp((1− γ)σx)vS (ωS exp(σ(xS − x))) exp(−x2/2)dx

= exp((1− γ)(µ+ σxS))√
2π

∫ ∞
0

exp((1− γ)σs)vS (ωS exp(−σs))) exp(−(s+ xS)2/2)ds,

where s ≡ x− xS . Multiplying and dividing by exp(−s), we obtain

I2(xS) = exp((1− γ)(µ+ σxS))√
2π

∫ ∞
0

ψ(s;xS) exp(−s)ds,
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where
ψ(s;xS) = exp((1 + (1− γ)σ)s− (s+ xS)2/2)v (ωS exp(−σs))) ,

which is evaluated using a Gauss-Laguerre quadrature method.

The algorithm is then as follows

1. Set a grid of values for ω: Ω = {ω1, . . . , ωn}, and a grid for xS , Ξ = {xS1, . . . , xSm}. We use 500 grid

points for Ω and 20,000 grid points for Ξ.

2. Conjecture a value function vS,i(ω), i = 0, and an initial value for vD,i, i = 0. We use

vD,0 =
(ϕ(1−τ))1−γ

1−γ + βθλvS,0(0)E[g1−γ ]
1− βθ(1− λ)E[g1−γ ]

and an initial threshold value ωS,i.

3. Given values conjectured at iteration i, evaluate :

Ψ(ω, xS) =
(
ϕ+ ωS

1+r exp(µ+ σxS)(1− Φ(xS))− ω
)1−γ

1− γ + βθ(I1(xS)vD,i + I2(xS)),

for each pair (ω, xS) ∈ (Ω×Ξ), where integrals are evaluated using a 100 nodes Gauss-Laguerre quadrature

method.

4. Find Ψ?(ω) = max
xS

Ψ(ω, xS) and the associated x?S(ω) = argmax Ψ(ω, xS) on the grid and update the value

functions

vS,i+1(ω) = T (vS,i) (ω) = max(vD,i,Ψ?(ω)),

vD,i+1 = T (vD,i) = (ϕ(1− τ))1−γ

1− γ + βθ [λvS,i(0) + (1− λ)vD,i] exp
(

(1− γ)µ+ (1− γ)2 σ
2

2

)
.

5. Update the threshold value ωS,i+1 that solves

vS,i+1(ωS,i+1) = vD,i+1.

6. Compute ES = ‖vS,i+1(ω)−vS,i(ω)‖∞, EA = ‖vA,i+1−vA,i‖∞ and Eω = ‖ωS,i+1−ωS,i‖∞. If max(ES , EA, Eω) <

ε, ε > 0, then stop, else go back to 3.

After having achieved convergence, compute

g?S (ω) = exp(µ+ σx?S(ω)),
d?S (ω) = ωS exp(µ+ σx?S(ω)),

b?S (ω) = ωS
1 + r

exp(µ+ σx?S(ω)) [1− Φ (x?S (ω))] ,

PD?
S (ω) = Φ (x?S (ω)) .
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