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Abstract

is paper combines elementary revealed preference principles and nonparametric esti-

mation techniques to obtain nonparametric bounds on the distribution of the money met-

ric utility over a population of heterogeneous households. Our approach is independent of

any functional specification on the household utility functions, meaning that our results are

robust against parametric specification errors. Our methodology can also be used to es-

tablish bounds on the distribution of the demand function in counterfactual price regimes.

To demonstrate the relevance of our approach, we illustrate our findings using a repeated

cross–sectional household consumption data set.
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proach combines elementary revealed preference concepts, in particular the Weak Axiom of Re-

vealed Preference, with nonparametric estimation techniques. In this manner, our approach re-

mains independent of any parametric specification on the underlying household utility functions

or on the unobserved heterogeneity distribution. We further demonstrate how the framework can

be used to establish bounds on the distribution of the demand functions in counterfactual price

regimes. An illustration using the Consumer Expenditure Survey, a US cross–sectional household

consumption data set, demonstrates the practical usefulness of our results.

Motivation Demand analysis provides a powerful tool to analyse behavioural responses and

welfare effects due to price and income variations. In a typical demand study, the researcher first

estimates the parameters of some parametric demand system,1 and uses these estimates to calcu-

late the associated indirect utilities. is ‘parametric’ approach has two major shortcomings. e

first is that the outcome is sensitive to the specific functional structure chosen by the researcher.

Imposing the wrong functional form can therefore severely bias the resulting analysis. A second

shortcoming concerns the treatment of individual (unobserved) heterogeneity. In a typical con-

sumer data set, we observe individuals or households only once. Given this data limitation, it is

oen assumed that similar looking individuals have similar preferences. Many demand studies

therefore model a household’s demand to equal a rational systematic component, from a com-

mon utility function across all (similar looking) households, and a household specific additive

error term capturing the unobserved heterogeneity or taste variation. By controlling for various

observable characteristics (like household size), it is hoped that the issue of heterogeneity across

the households is adequately addressed by including such additive error term. is assumption,

however, disregards the finding that individuals who look very similar may actually differ dra-
1Popular parametric demand systems are the Translog (Christensen, Jorgenson, and Lau, 1975), the Almost Ideal

(Deaton and Muellbauer, 1980), or the Quadratic Almost Ideal (Banks, Blundell, and Lewbel, 1997) demand system.
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matically in their actual choice behaviour.2 As shown by Lewbel (2001), imposing additivity of

the unobserved heterogeneity is a strong assumption. Its resulting implications come very close

to enforcing a representative agent assumption.3 To summarize, we see that different people (al-

though they may look the same) have different tastes and, consequentially, behave differently. In

order to take this into account, it is crucial to allow for non-additive unobserved heterogeneity.

Literature overview In order to deal with aforementioned two problems, one can distinguish

between two approaches. e first approach looks at the nonparametric differential ‘smooth’

restrictions that can still be established in a heterogeneous population. ese usually take the

form of population level generalizations of Slutsky symmetry, negativity and homogeneity. Re-

cent examples that follow this approach are Hoderlein (2011), Blundell, Horowitz, and Parey

(2013), Hausman and Newey (2013), Hoderlein and Vanhems (2013), and Dette, Hoderlein, and

Neumeyer (2014). A second approach, followed in this paper, is to rely on revealed preference

theory. Revealed preference theory was initiated by Samuelson (1938), Houthakker (1950) and

further developed in several seminal contributions by Afriat (1967), Diewert (1973) and Varian

(1982). e main aim of revealed preferences theory is to establish (combinatorial) restrictions

on observed demand behaviour of a certain individual or household such that it is consistent with

the classical model of utility maximization subject to a budget constraint. One of the main advan-

tages of revealed preference theory is that it imposes no functional restrictions on the underlying

utility function, except for some regularity conditions like local non-satiation.

Revealed preference theory, as it was initially developed, has two main problems. First, from

an empirical point of view, the method does not really seem to provide very tight bounds. e

main reason for this is that relative price variations usually tend to be quite small in comparison
2Unobserved heterogeneity is oen seen as the main reason why demand estimations on cross sectional data

typically have low r-squared values.
3See also Brown and Walker (1989) and McElroy (1987) for a discussion of other issues when taking into account

unobserved heterogeneity.
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to income variation. is implies that budget hyperplanes oen do not cross. We refer to Bronars

(1987) and Varian (1982) for a discussion of this problem. e second problem is that revealed

preference theory is not well suited to deal with unobserved individual heterogeneity. As a result,

most of its applications remain confined to a few panel consumption data sets, where the same

household or individual is observed over multiple periods.

e first problem has been the subject of several recent studies that apply revealed preference

theory to repeated cross sectional data by combining insights from revealed preference theory

with nonparametric estimation techniques (see Blundell (2005); Blundell, Browning, and Craw-

ford (2003, 2007, 2008) and Blundell, Browning, Cherchye, Crawford, De Rock, and Vermeulen

(2015)). e main contribution from this literature is that it shows how to use nonparametric

Engel curve demand estimates as an input for revealed preference analysis. If we assume that

households in the same time period and location face the same relative prices, then the non-

parametric Engel curves estimate the mean (or average) expansion paths for each price regime.

e availability of these expansion paths greatly improves the nonparametric bounds on various

welfare related concepts and on the counterfactual demand estimates that can be obtained using

revealed preference techniques.

A remaining drawback of this approach is the way it deals with the issue of unobserved hetero-

geneity. Given that the Engel curve estimates are obtained from a mean regression, the methodol-

ogy is subject to Lewbel (2001)’s critique: imposing revealed preference restrictions on the mean

Engel curve estimates comes very close to imposing a representative consumer assumption. Given

this, the approach does not fully address the individual heterogeneity problem. Moreover, despite

the fact that the procedure has the potential to produce tight bounds on the ‘representative’ money

metric utility and demand functions, it does not give us any information concerning the distribu-

tion of these functions across the heterogeneous population.

A useful extension of revealed preference theory that explicitly takes into account individual

heterogeneity is Stochastic Revealed Preferenceeory, initiated byMcFadden and Richter (1971)
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and Falmagne (1978).4 We refer to McFadden (2005) for an overview of the literature. Stochastic

revealed preference takes as input the entire distribution of demand behaviour over a heteroge-

neous population of households for a finite number of budget sets.5 erefore, it is well suited to

deal with the issue of unobserved heterogeneity. e literature has put forward several rational-

ity axioms (e.g. the Axiom of Revealed Stochastic Preference and the Weak Axiom of Stochastic

Revealed Preference) that provide conditions on the distributions of choices such that a popula-

tion of individuals is consistent with rational choice theory, which postulates that individuals are

preference maximizers. Although the literature is mainly theoretical, several recent papers devel-

oped statistical tests to verify whether the stochastic revealed preference axioms are satisfied in

reality. Hoderlein and Stoye (2014a) derive a statistical procedure to infer bounds on the fraction

of the population that violates the Weak Axiom of Stochastic Revealed Preference. Kitamura and

Stoye (2013) derive a statistical test to verify whether a population of heterogeneous households

satisfies the Axiom of Stochastic Revealed Preference for a finite collection of budget sets, thereby

explicitly taking into account transitivity of the preference relations. Finally, Kawaguchi (2012)

derives several procedures to test the validity of various axioms of revealed stochastic preference.

Interestingly, these studies find little evidence that the stochastic revealed preference restrictions

are violated. e main difference between these papers and ours is the focus. While the existing

contributions mainly deal with testing whether the axioms imposed by the stochastic revealed

preference literature hold, we are more interested in the restrictions that the stochastic revealed

preference axioms impose on the resulting distribution of the money metric utility and demand

functions. In the terminology of Varian (1982): while above papers deal with testing the theory,

we concentrate on the recovery of the underlying structure of the model.
4See also Block and Marschak (1959), McFadden (1975), Fishburn (1978), Cohen (1980), Barberá and Pattanaik

(1986), Fishburn and Falmagne (1989), Cohen and Falmagne (1990), Fishburn (1992) andBandyopadhyay, Dasgupta,

and Pattanaik (1999) for other contributions.
5A second interpretation of stochastic revealed preference theory is that the demand behavior is generated by a

single household with a random utility function.
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Another closely related paper is Blundell, Kristensen, and Matzkin (2014). ese authors fo-

cus on the issue of unobserved heterogeneity in a two goods setting. In particular, they tackle the

problem of individual unobserved heterogeneity using nonparametric quantile demand estimates

in combination with standard revealed preference tests (i.e. SARP). Hoderlein and Stoye (2014b)

recently showed that in a two goods setting, imposing the usual revealed preference axioms on

the quantile demands is equivalent to imposing the Axiom of Stochastic Revealed Preference on

the entire data set.6 e analysis of Blundell, Kristensen, and Matzkin (2014) is based on an in-

vertibility (monotonicity) condition on the unobserved heterogeneity term. In our framework,

we abstain from imposing such condition.

Contribution e main contribution of this paper is to derive nonparametric bounds on the

moneymetric utility functions and the demand functions without imposing any functional struc-

ture on the household utility functions and the unobserved heterogeneity structure. As such,

we avoid the problem that our results might be biased because of a wrong functional specifica-

tion or because the households do not satisfy the ‘representative agent’ condition. We establish

our results by combining elementary stochastic revealed preference theory and nonparametric

estimation techniques. Our framework not only allows us to derive bounds on the mean of the

money metric utility and demand functions, but on the entire distribution of these functions over

the heterogeneous population. is provides important additional information concerning the

distribution of welfare and demand over the population.

In order to obtain our results, we exploit the Weak Axiom of Revealed Preferences (WARP)

applied to a population of heterogeneous households. Although this axiom is weaker than the

revealed preference axioms that exploit transitivity (e.g. the StrongAxiomofRevealed Preference),

we nevertheless show that it is powerful enough to establish narrow bounds. We demonstrate the
6In a two-goods setting, the analysis is simplified by the fact that the Weak and Strong Axioms of (Stochastic)

Revealed Preference coincide. In other words, imposing transitivity implies no additional testable implications, see

Rose (1958).
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usefulness of our results by applying it to the Consumer Expenditure survey, a US cross sectional

consumption data set.

Outline In section 2, we set out our framework and we present the necessary notation, concepts

and definitions for the remaining part of the paper. Section 3 establishes the theoretical results

that provide the nonparametric bounds on the distribution of the money metric utility function

and the demand functions. Section 4 contains our empirical application. We discuss estimation,

statistical inference and we present several results. Section 5 concludes and points towards future

research.

2 Notation and Definitions

We consider an economy with a large (infinite) number of households described by a probabil-

ity space (J,Ω, P ). Household h ∈ J is endowed with a utility function which we denote by

uh(q
h; ah). is function depends on a (column) vector of consumed goods qh ∈ Rn

+, where n is

the number of goods, and a vector of observable household specific attributes ah, e.g. household

composition. Unobserved preference heterogeneity is captured by the fact that uh depends on h.

For a price vector p ∈ Rn
++ and an expenditure level x ∈ R+, we denote by (p, x), the budget

set consisting of all bundles q such that pq ≤ x. In order to decide how much to consume, the

household maximizes its utility function subject to a household budget constraint, 7

qh(p, x
h; ah) = argmax

q
uh(q; a

h) s.t. pq ≤ xh.

Utility functions are strictly quasi-concave and twice continuously differentiable in q such that

the demand functions are well defined and continuous in p and x. For all income levels x and
7We abstract from the problem that households are typically composed of several individuals (Chiappori, 1988,

1992; Cherchye, De Rock, and Vermeulen, 2007).
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prices p and all measurable sets A ∈ Ω we assume that,

P (h ∈ A|p, x, a) = P (h ∈ A|a).

is condition says that, conditional on all observable attributes, the unobserved heterogeneity is

independent of prices and income. is ‘independence of budget sets’ condition is common in the

literature.8 If we interpret unobserved heterogeneity as preference heterogeneity, it encompasses

the idea, common in consumer demand, that preferences do not vary with prices and income. For

notational convenience, we omit from now (until section 4.2) the dependence on the observable

attributes a, taking into account that every expression is valid conditional on a particular value of

this vector.

For the remaining part of the paper, it will be more useful to work with the indirect utility

function vh(p, x
h) which gives the maximal utility that household h can obtain at prices p and

income xh. e indirect utility function is defined from the direct utility function by,

vh(p, x
h) ≡ uh(qh(p, x

h)).

e indirect utility function is strictly increasing in the level of disposable income xh. If we invert

the indirect utility function vh(p, x
h), with respect to xh, we obtain the expenditure function

eh(p, u
h) which gives the minimal outlay for household h to reach utility level uh at prices p.

Finally, using the expenditure function, we can define the money metric utility function,

µh(pv,pt, x
h) ≡ eh(pv, vh(pt, x

h)).

e money metric utility µh(pv,pt, x
h) gives the minimal amount of expenditure that household

8See for example, Lewbel (2001, equation 4), Hausman and Newey (2013, Assumption1), Blundell, Kristensen,

and Matzkin (2014, Assumption A.1) and Bhattacharya (2015).

8



h needs at prices pv to be equally well off as it would have been when facing prices pt and income

xh. e money metric utility lies at the basis of many cost of living indices. In particular, given

two price vectors pt and pv and some reference budget (p, x), the Konüs cost of living index,

describing the price increase from pt to pv, is defined as,

µh(pv,p, x)

µh(pt,p, x)

ere are two natural choices for p, namely pt and pv. Setting p equal to the initial price pt gives

the Laspeyres-Konüs cost of living index,

µh(pv,pt, x)

x
.

If we set p equal to the final price vector pv, we obtain the Paasche-Konüs cost of living index,

x

µh(pt,pv, x)
,

Both indices are used to describe the increase in the cost necessary to maintain the same liv-

ing standard over time. eir distributions can easily be constructed provided that we know the

distribution of the money metric utility function. e money metric utility also provides a cardi-

nalisation of the utility function in the sense that for any reference price vector p and for any two

budgets (pt, x) and (pv, y):

µh(p,pt, x) ≥ µh(p,pv, y) ⇐⇒ vh(pt, x) ≥ vh(pv, y).

As such, the difference in the money metric can be used as a measure for the welfare difference

for two different budgets: if (pt, x) is the old budget and (pv, y) is the new one, then this welfare
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change can be measured by,

µh(p,pv, y)− µh(p,pt, x)

Again, there are two obvious choices for the base price vector p, namely pt or pv. e first leads

to the equivalent variation,

EV = µh(pt,pv, y)− x.

e second gives the compensating variation,

CV = y − µh(pv,pt, x).

Revealed preferences e analysis in the following sections depends on a simple revealed pref-

erence idea. Fix a household h and consider two distinct budgets (pt, x) and (pv, y). If the house-

hold is utility maximizing, then the following condition must hold,

If x ≥ ptqh(pv, y) then vh(pt, x) > vh(pv, y). (1)

e reasoning behind the condition is simple, if x ≥ ptqh(pv, y), then the consumed bundle

qh(pv, y) at the budget (pv, y)was also feasible whenqh(pt, x)was chosen. Given that the house-

hold h is utility maximizing and that the budget sets are distinct, it follows that uh(qh(pt, x)) >

uh(qh(pv, y)), or equivalently, vh(pt, x) > vh(pv, y). It is easy to see that condition (1) implies

the Weak Axiom of Revealed Preference (Samuelson, 1938), which states that for any two distinct

budgets (pt, x) and (pv, y),

If x ≥ ptqh(pv, y) then y < pvqh(pt, x).
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3 Nonparametric bounds

In this section we show how to use basic revealed preference restrictions, in particular condition

1, together with information on the distribution of qh(pt, x) in order to establish bounds on the

distribution of themoneymetric utility function and themeandemand functions. As a first partial

result, we demonstrate the possibility to obtain bounds on the proportion of households in the

economy that prefer a certain budget over another.

Observational assumptions We depart from the observational restrictions imposed by a re-

peated cross sectional household consumption dataset, where different households face the same

prices in each cross section. is gives us a data structure with a limited set of price regimes, and

for each price regime a large number of consumption bundles which are obtained from a random

sample of households in the economy. We denote by T = {1, . . . , |T |}, the set of cross sections.

e price vector corresponding to cross section t ∈ T is denoted by pt.

Given that different households face distinct expenditure levels, it is possible to obtain the

distribution of the random consumption bundles qh(pt, x) for every cross sectional price vector

pt, (t ∈ T ) and for any level of expenditure x.9 We assume thatqh(pt, x) has a continuous density

function which is strictly positive on its domain. We use the notation Pr[A] as a shorthand for

the following probability,

Pr [A] =

∫
1[h ∈ A]dP (h),

where 1[·] is the binary indicator function which equals one if and only if the term between brack-

ets is true. Pr [A] is the fraction of the households for which the statementA holds. Equivalently,

it gives us the probability that A holds for a household h drawn at random from the population.

We require sufficient variation of preferences and demand such that for any two distinct budgets
9Estimation will be discussed in section 3.
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(pt, x) and (pv, y),

Pr [x = ptqh(pv, y)] = 0, and

Pr [vh(pt, x) = vh(pv, y)] = 0

is will allow us to freely interchange strict and weak inequalities within the function Pr[.].

3.1 Bounds on population preferences

Consider two budgets (pt, x) and (pv, y). Given that all households are rational, we know from

condition 1 that for all households h,

If x ≥ ptqh(pv, y) then, vh(pt, x) > vh(pv, y).

is means that 1 [x > ptqh(pv, y)] ≤ 1 [vh(pt, x) > vh(pv, y)]. Integrating both sides, and

using the independence assumption, we obtain,

Pr [x ≥ ptqh(pv, y)] ≤ Pr [vh(pt, x) ≥ vh(pv, y)] ,

⇐⇒ rt,v(x, y) ≤ Pr [vh(pt, x) ≥ vh(pv, y)] . (2)

is inequality provides a lower bound on the fraction of households that prefer the budget (pt, x)

over the budget (pv, y). Given inequality (2), and the fact that,

Pr [vh(pt, x) ≥ vh(pv, y)] + Pr [vh(pv, y) ≥ vh(pt, x)] = 1,

We immediately obtain the upper bound,

Pr [vh(pt, x) ≥ vh(pv, y)] ≤ 1− rv,t(y, x).
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For both lower and upper bounds to be valid, it should be the case that for all cross sections

t, v ∈ T and all expenditure levels x, y,

rt,v(x, y) + rv,t(y, x) ≤ 1.

is condition is equivalent to the Weak Axiom of Stochastic Revealed Preference applied to our

setting (see Bandyopadhyay, Dasgupta, and Pattanaik (1999, 2002, 2004) and Matzkin (2007) for

a similar inequality). Hoderlein and Stoye (2014a) and Kawaguchi (2012) recently developed

(among other things) a statistical test that verifies whether this condition is satisfied. ere are

two potential issues that may arise. First of all, it may happen that rt,v(x, y) + rv,t(y, x) is larger

than one, in which case the bounds cannot be simultaneously satisfied. Alternatively, it may hap-

pen that rt,v(x, y) + rv,t(y, x) is considerably smaller than one, in which case the range may be

too large to contain much useful information. Whether one of those problems arises is obviously

an empirical matter. Appendix A presents potential solutions to deal with both of these issues.

3.2 Bounds on money metric utility

Let us now show how to use inequality (2) to bound the distribution of the money metric utility

function µh(pt,p0, x0) for some price vectors p0 and pt corresponding to the prices of two cross

sections in the data set and for a particular level of income x0. Let us first focus on the upper

bounds.

Upper bounds Fix a cross sectional price vector p0 and an income level x0. For any number

π ∈ (0, 1) and any cross section t ∈ T , let ht(π) be the π-th quantile of the variable ptqh(p0, x0),

π = Pr [ht(π) ≥ ptqh(p0, x0)] ,

= rt,0(ht(π), x0)
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From inequality (2), we know that π is lower than the fraction of the households that prefer the

budget (pt, ht(π)) over the budget (p0, x0).

π ≤ Pr [vh(pt, ht(π)) ≥ vh(p0, x0)] ,

= Pr [ht(π) ≥ µh(pt,p0, x0)] .

e second line is obtained by inverting the indirect utility function vh(pt, ht(π)) with respect

to its second argument. is can be done by the fact that the indirect utility function is strictly

increasing in income.

Let us denote by mt(π) the quantile function of µh(pt,p0), i.e. for all π ∈ (0, 1)

Pr [µh(pt,p0, x0) ≤ mt(π)] = π.

en, using our previously established result, we have that,

Pr [µh(pt,p0, x0) ≤ mt(π)] = π ≤ Pr [µh(pt,p0, x0) ≤ ht(π)] ,

⇐⇒ mt(π) ≤ ht(π).

e last line uses the assumption that the cumulative distribution function of µh(pt,p0, x) is

strictly increasing on its support. is result shows that ht(π) is an upper bound on the πth

quantile of the distribution of the money metric utility function. Using these upper bounds on

the quantiles; we can also derive an upper bound on the mean value of the money metric utility.

Let M be the mean of the function µh(pt,p0, x0). We have that:

M =

∫ ∞

0

µh(pt,p0, x0)dF (µh(pt,p0, x0)),

=

∫ 1

0

mt(π)dπ ≤
∫ 1

0

ht(π)dπ.
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In practice, we compute the values of ht(π) for a finite grid of values π0, π1, . . . , πn with π0 = 0

and πN = 1.10 is allows us to approximate this upper bound by,

∫ 1

0

ht(π)dπ ≤
N∑

n=1

(πn − πn−1)ht(πn).

e finer the grid, the better the approximation.

Lower bounds We use a similar procedure to compute lower bounds on the quantiles. For π ∈

(0, 1), let ℓt(π) solve,

1− π = Pr [x0 ≥ p0qh(pt, ℓt(π))] ,

= r0,t(x0, ℓt(π))

en,

1− π ≤ Pr [vh(p0, x0) ≥ vh(pt, ℓt(π))] ,

= Pr [µh(pt,p0, x0) ≥ ℓt(π)] ,

= 1− Pr [µh(pt,p0, x0) ≤ ℓt(π)]

Asbefore, letmt(π)be theπth quantile of the distribution of themoneymetric utilityµh(pt,p0, x0).

We have that,

Pr [µh(pt,p0, x0) ≤ mt(π)] = π ≥ Pr [µh(pt,p0, x0) ≤ ℓt(π)] ,

⇐⇒ mt(π) ≥ ℓt(π)

10e upper bound ht(1) can be set to the minimal income such that the budget hyperplane for (pt, ht(1)) lies

above the hyperplane for (p0, x0).
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is shows that ℓt(π) is a lower bound for the quantilemt(π). e meanM is then bounded from

below by the quantity
∫ 1

0
ℓt(π)dπ which can be approximated by

∑N−1
n=0 ℓt(πn)(πn+1 − πn).11

3.3 Bounds on demand functions

Now, we demonstrate how to adapt above framework in order to establish bounds on the quantiles

of the demand functions for unobserved, counterfactual, price regimes p0 and expenditure levels

x0, i.e. p0 does not necessarily correspond to a price vector of a certain cross section.

Consider a function f : Rn
+ → R : q 7→ f(q). In this section, we will provide upper

bounds on the quantiles of the distribution of the random variable f(qh(p0, x0)). e function

f(.) encompasses various interestingmeasures. For example, if we want to bound the expenditure

share on one of the goods, we can use the function f(q) = 1
x0
p0,jqj , where p0,j is the price of good

j in vector p0, qj is the quantity of good j in vector q and x0 is the expenditure level.

e focus on upper bounds is not restrictive given that we can always use information on

upper bounds to construct lower bounds. In order to see this, let −m(1 − π) be the (1 − π)th

quantile of the variable−f(qj(p0, x0)) and let−g(1−π) be its upper bound. We then have that,

1− π =

∫
1 [−f(qh(p0, x0)) ≤ −m(1− π)] dP (h),

≤
∫
1 [−f(qh(p0, x0)) ≤ −g(1− π)] dP (h),

⇐⇒ π ≥ 1−
∫
1 [−f(qh(p0, x0)) ≤ −g(1− π)] dP (h),

=

∫
1 [−f(qh(p0, x0)) > −g(1− π)] dP (h),

=

∫
1 [f(qh(p0, x0)) ≤ g(1− π)] dP (h).

As such, we see that g(1−π) provides a lower bound on the πth quantile of f(qh(p0, x0)). As an
11e lower bound ℓt(0) can be set to the maximal income such that the hyperplane for the budget set (pt, ℓt(0))

lies below the hyperplane for (p0, x0).
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example, we can establish a lower bound on the πth quantile of f(q) = 1
x0
p0,jqj by constructing

an upper bound on the (1− π)th quantile of − 1
x0
p0,jqj(=

∑
i̸=j

1
x0
p0,iqi − 1).

For every cross section t, we previously defined the value ℓt(1−π) that satisfied the following

condition,

π = Pr [x0 ≥ p0qh(pt, ℓt(1− π))] ,

= r0,t(x0, ℓt(1− π)).

evalue of ℓt(1−π) can be obtained using information onx0,p0 and the distribution ofqh(pt, x)

alone, which we assumed to be known. For the next step, we use the Weak Axiom of Stochastic

Revealed Preference, which requires that,

rt,0(ℓt(1− π), x0) + r0,t(x0, ℓt(1− π)) ≤ 1,

⇐⇒ r0,t(x0, ℓt(1− π)) ≤ 1− rt,0(ℓt(1− π), x0).

Let m(π) be the πth quantile of the distribution function of the random variable f(qh(p0, x0)).

We have that,

Pr [f(qh(p0, x0)) ≤ m(π)] = π = r0,t(x0, ℓt(1− π)),

≤ 1− rt,0(ℓt(1− π), x0),

= Pr [ℓt(1− π) ≤ ptqh(p0, x0)]

≤ Pr

[
f(qh(p0, x0)) ≤ max

q
f(q) s.t ℓt(1− π) ≤ ptq and p0q = x0

]

e last inequality follows from the fact that whenever ℓt(1− π) ≤ ptqh(p0, x0) holds, then

f(qh(p0, x0)) ≤ maxq f(q) s.t ℓt(1 − π) ≤ ptq and p0q = x0 must also hold. In order to

see this, assume on the contrary that f(qh(p0, x0)) is larger than f(q) for all vectors q where
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p0q = x0 and ℓt(1− π) ≤ ptq. en, given that p0qh(p0, x0) = x0, it must be that ℓt(1− π) >

ptqh(p0, x0), a contradiction.

Above result shows that,

m(π) ≤ max
q

f(q) s.t ℓt(1− π) ≤ ptq and p0q = x0,

for all cross sections t. In practice, we compute this right hand side for every cross section t and

then take the lowest value across all cross sections as the upper bound. If f is a linear function,

then the right hand side is a simple linear programming problem which can be solved efficiently.

e construction of the bounds in the simple two goods setting is illustrated in Figure 1. ere

are three budget lines corresponding to (p0, x0), (pt, ℓt(1 − π)) and (pv, ℓv(π)). e incomes

ℓt(1 − π) and ℓv(π) are chosen such that the mass of households on the dashed line segment

(where x0 > p0qh(pt, ℓt(1 − π))) is equal to π and the mass of households on the dotted line

segment (where x0 > p0qh(pv, ℓv(π))) is equal to (1− π).

e quantity q2 is the maximum value of good 2 that corresponds to a bundle on the budget

(p0, x0) (where p0q = x0) and ℓt(1 − π) ≤ ptq. From the result above, we know that this

value gives an upper bound on the πth quantile of the distribution of q2,h(p0, x0). Given that

there are only two goods, this upper bound immediately gives a lower bound on the (1 − π)th

quantile of q1,h(p0, x0), given by q
1
. Similarly, q1 gives an upper bound on the (1− π)th quantile

of q1,h(p0, x0), while q
2
gives a lower bound on the πth quantile of q2,h(p0, x0). As such, the

πth quantile of q2,h(p0, x0) is bounded by the quantities q2 and q
2
. Given these bounds on the

quantiles of the demand functions, we can compute bounds on the mean of the demand function

by using a similar procedure as for the money metric utility function.
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Figure 1: Illustration of the construction of the bounds
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4 Application

In this section, we discuss the empirical implementation of the theoretical bounds that were es-

tablished in the previous section. We first present our estimation procedure for the measures

rt,v(x, y), ℓt(π) and ht(π). Next, we discuss how we control for observed heterogeneity and en-

dogeneity of the total expenditures. We also very briefly discuss the issue of statistical inference

on bounds. Finally, we present some empirical results.

4.1 Estimation procedure

e construction of the bounds in the previous section assumed that we know the distribution of

the variables qh(pt, x) for every cross sectional price pt and every income level x. Given these

distributions it is fairly easy to obtain the quantities rt,v(x, y) = Pr [x ≥ ptqh(pv, y)], which

form the main building blocks for our bounds. In practice, however, these probabilities need to

be estimated. We propose a kernel estimator.
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Consider the vth cross section, v ∈ T . Assume that this cross section contains a sample of n

observed household demand bundles {qv,i}i≤n where i corresponds to a particular observation.

We denote by {zv,i}i≤n the log of the expenditure levels (zv,i = ln(pvqv,i)). We assume that the

sample {qv,i}i≤n is i.i.d drawn from the random vector qv with distribution F (.). We denote by

zv the random variable ln(pvqv). Finally, let sv be the random vector of normalized consumption,

sv = qv/xv and denote the realizations of sv by sv,i = qv,i/xv,i

We have that,

rt,v(x, y) =

∫
1 [x ≥ ptqh(pv, y)] dP (h),

=

∫
1 [x ≥ ptqv] dF (qv|zv = ln(y)),

=

∫
1 [xpvsv ≥ ptysv] dF (sv|zv = ln(y)),

=

∫
1 [(xpv − ypt) sv ≥ 0] dF (sv|zv = ln(y)).

Here we used the identity pvsv = 1 and the fact that, conditional on zv = ln(y), qv = ysv. We

can estimate this value using the Nadaraya-Watson estimator,

1
nh

∑n
i=1 1 [(xpv − ypt) sv,i ≥ 0] k

(
zv,i−ln(y)

h

)
1
nh

∑n
i=1 k

(
zv,i−ln(y)

h

) .

where h is the bandwidth and k (.) is a symmetric kernel function that satisfies
∫
k(v)dv = 1 and∫

vk(v)dv = 0.12

If for n → ∞, h → 0 and nh → ∞, then the estimators r̂t,v(x, y) consistently estimate

rt,v(x, y). Under suitable conditions13 the estimator
√
nh [r̂t,v(x, y)− rt,v(x, y)] is asymptotically

normally distributed (see Li and Racine (2007)).
12In our application, we use the Gaussian kernel.
13In particular, (i) µ(y) > 0, (ii) rt,v(x, y) ∈ (0, 1), (iii) µ(y) and rt,v(x, y) have continuous second order deriva-

tives with respect to y. and (iv) nh7 → 0
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e estimators for ht(π) and ℓt(π) are computed as the solution to the following equations,

π = r̂t,0(ĥt(π), x0),

1− π = r̂0,t(x0, ℓ̂t(π)),

using standard binary search algorithms. In order for this algorithm to work, we assume that

r̂0,t(x0, ℓ̂t(π)) is decreasing in ℓ̂t(π). is assumption is (asymptotically) valid if all goods are

normal (i.e. all demand functions are increasing in income).14

eestimators ĥ(π) are equivalent to a conditional quantile kernel estimator. ese estimators

are consistent and asymptotically normal for ht(π) as long as for n → ∞, h → 0 and nh →

∞ (Li and Racine, 2007, section 6.3). Using a proof similar to the one of Cai (2002, eorem

2), we show in the appendix that for n → ∞, h → 0 and nh → ∞, the estimators ℓ̂t(π) are

consistent for ℓt(π) and that, given some additional conditions,15 they are asymptotically normally

distributed. As usual with kernel estimators, each of these estimators will have an asymptotic

bias which does not disappear asymptotically when using the optimal bandwidth. One possible

solution is to undersmooth.

e estimators for the bounds on the demand functions are computed by substituting the

estimated values ℓ̂t(π) for the values of ℓt(π) in the linear programming problems. e resulting

estimators are determined as the minimum over a finite set of values which are themselves the

solution of a linear maximization problem that contains the estimates ℓ̂t(π) as a parameter. From

the continuous mapping theorem, it follows that these are also consistent.

Observable heterogeneity and endogeneity Weadjust the kernel estimators r̂t,v(x, y) by includ-

ing a semi-parametric specification. We have two reasons to do this. First of all, given the data
14See also Blundell, Browning, and Crawford (2003) for a similar assumption.
15In particular, we require that rt,v(x0, ℓt(π)) has strict negative partial derivative with respect to ℓt(π) and that

√
nh3 → ∞.
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limitations, we would like to allow our estimators to depend on the vector of observed covariates,

ah, without fully conditioning on each of its values. Next, we need to take into account the fact

that total expenditures are probably endogenous. We follow Blundell, Browning, and Crawford

(2008), and consider the following semiparametric modification,

E [1[(xpt − ypv) sv,i ≥ 0]] = g(zv,i − ϕ(a′
v,iθ)) + a′

v,iγ + εv,i,

whereav,i be the observed household composition in cross section v for household i. e function

ϕ(a′
v,iθ) can be interpreted as the log of a general equivalence scale for the household, and a′

v,iγ

documents theway inwhich observable demographic differences across households impact on the

le hand side. Similar to Blundell et al. (2008) we use an estimate of the general equivalence scale

ϕ(a′
v,iθ)) taken from the Organisation for Economic Co-operation and Development (OECD)

scales.

In order to control for the endogeneity of zv, Blundell, Browning, andCrawford (2008) suggest

to use a control function approach based on the two step semiparametric estimator (this estimator

is based on the procedure set out by Newey, Powell, and Vella (1999)). In a first step, we obtain the

residuals from a regression of the log of total expenditure on all exogenous variables in the model

and on an excluded instrument. We take the log of (equivalent) labor income as an instrument.

In the second step, we conduct a semiparametric regression of 1 [(xpt − ypv)sv,i ≥ 0] on g(zv,i−

ϕ(a′
v,iθ)), a′

v,iγ and δ̂v,i, where δ̂v,i are the residuals from the first stage regression.

Inference on bounds e methodology outlined in section 3 provides nonparametric bounds

on various parameters of interest (e.g. the quantiles of the money metric utility). Given that the

bounds are based on finite sample estimates, we are confronted with the issue of statistical infer-

ence, in particular, the construction of confidence intervals. Given that our estimates only provide

bounds, this problem fits in the literature that deals with the construction of confidence intervals

for partially identified estimators. We refer to the several recent papers by Imbens and Manski
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(2004); Chernozhukov, Hong, and Tamer (2007); Stoye (2009); Bugni (2010); Chernozhukov, Lee,

and Rosen (2013) and in particular to the recent paper of Hoderlein and Stoye (2014a) who con-

sider the problem of constructing confidence intervals in a setting which is similar to ours.

In principal, we need to deal with two issues. First, the construction of CI for the estimates of

the bounds and next, the construction of the CI for the identified set itself. For the latter we choose

Bonferroni type intervals which provide conservative inference. For the former, we notice that

the estimates of our bounds are obtained as the maximum or minimum of a number of estimators

that are computed using samples from different cross sections. It can be shown that in such cases,

the usual bootstrap procedure is not valid (Andrews, 2000). In order to obtain asymptotic valid

inference we use the subsampling procedure which is discussed in detail by Politis, Romano, and

Wolf (1999). Subsampling is similar to bootstrap but the samples taken are smaller and draws

are obtained without replacement. e subsampling procedure is valid under very weak assump-

tions, in particular for all of our estimators (see also Appendix D for more information on the

implementation of our subsampling).

4.2 Data Description

We illustrate our approach by using a data sample from the Consumer Expenditure Survey (CEX),

a repeated cross section. We use data on consumption decisions by US households from 1994 to

2007 (14 years). It is important to note that the consumer expenditures are derived from the di-

ary survey (and not from the interview data). e diary data seem well-suited for (static) demand

analysis. First of all, given thatwe focus onnon-durable consumption, which is customary in static

demand analysis, information on the purchase of big, durable items is unnecessary. Second, for

non-durable commodities, the diary survey invites respondents to indicate their consumption in

a two-week period. Because this period is relatively short, respondents should be able to recall

their expenditures. We follow Blundell et al. (2008) by focusing our attention to three broad ex-
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penditure categories, namely, food, other non-durables and services.16 As the diary survey reports

expenditures on a two-week basis, we convert these to yearly equivalents. Converting two-week

expenditures to yearly data poses an important problem of seasonality. erefore, we deseason-

alize using a dummy regression approach. Specifically, the expenditures on each category (re-

ported for two weeks) are regressed on month dummies. Residuals from this regression (which

can be interpreted as the variation in expenditures which can not be explained by seasonality or

by months) are added to the mean expenditures for each category in order to construct deseason-

alized expenditures. Observations with negative total expenditures are dropped. As mentioned

above, we also take into account that variation in expenditures can be driven by the household

composition, e.g. the number of adults or the number of kids living in the family. erefore, we

deflate total expenditures as well as total income by an OECD equivalence scale.

For the empirical analysis, we restrict attention to (i) households who have completed the

two-week diary, (ii) households who are not living in student housing, (iii) households who are

vehicle owners (to include fuel expenses), (iv) households where both members work at least 17

hours, (v) households in which both members are not self-employed, (vi) households in which

the age of the reference person is at least 21 and finally we restrict attention to (vii) households

that consist of a husband, a wife and possibly children. As a final step we also remove some outlier

observations.17 On average, we are le with 2163 observations per cross-section with a minimum

of 1775 observations in 1994 and amaximumof 2379 observations in 2007. e le pane of Figure

2 plots the evolution of the mean consumption shares of the three goods over the considered

periods. Price information is obtained from the Bureau of Labor Statistics. e right pane of

Figure 2 gives the evolution of these prices, normalized at the 1994 level.
16See Appendix C for a list of the different goods used for the construction of the aggregates.
17In particular, we removed observations for which rescaled total expenditures or expenditure shares are not within

3 standard deviations from themean and observations for which rescaled total expenditures are among the 5 per cent

lowest or 5 per cent highest expenditures or for which the expenditure shares on are close to 0.

24



Figure 2: Evolution of average consumption shares and prices
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4.3 Empirical results

In this section, we provide the results of several exercises. Due to limited space, we need to restrict

our analysis to some particular base years and some reference income levels. Additional results

are available from the authors upon request.

Bounds on the mean cost of living Let us first show how our bounds perform with respect to

the computation of the mean of the Laspeyres-Konüs cost of living index,

∫
µh(pt,p0, x0)

x0

dP (h) =
1

x0

∫
µh(pt,p0, x0)dP (h).

eLaspeyres-Konüs price indexmeasures the income that onewould need, relative to the income

in period 0, in order to be equally well off as in the initial period. We take 1994 as the reference

year which means that p0 corresponds to the price vector in the year 1994. We choose x0 as the

(OECD equivalence scale deflated) median expenditure level in 1994. e bounds on the cost

of living that we obtain using our procedure are given in the last column of Table 1. e table
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also reports values for various other prices indices like the Laspeyres (L), the Paasche (P) and the

Tornqvist price index (T).18 We also provide information on three other nonparametric bounds.

e first are the Lerner bounds which are obtained from the fact that:

min
j

{
pt,j
p0,j

}
≤ µ(pt,p0, x0)

x0

≤ max
j

{
pt,j
p0,j

}
.

e bounds by (Pollak, 1971) improve upon this by replacing the upper bound by the Laspeyres

price index.

min
j

{
pt,j
p0,j

}
≤ µ(pt,p0, x0)

x0

≤ ptq0

x0

.

e second to last column gives the bounds that are obtained by using the procedure set out

by Blundell, Browning, and Crawford (2003). is method first estimates nonparametric Engel

curves and subsequently uses these estimates in combinationwith revealed preference restrictions

to establish nonparametric bounds. We would like to emphasize that there is a clear conceptual

difference between the bounds of Blundell, Browning, and Crawford (2003) (and Pollak), and

ours. eir procedure provides bounds on the cost of living that correspond to some kind of

‘representative individual’ whose demand functions equal the mean demand functions over the

population. Our bounds, on the other hand, correspond to bounds on themean cost of living over

all households within the population. Although in our case, both procedures give similar results,

this does not have to be the case in general. One partial explanation for this fact might be that the

distribution of the cost of living over the households is quite symmetric (see below). Moreover,

we show in our next exercise that the cost of living for particular households (e.g. households at

the 10th or 90th percentile) may considerably diverge from the mean cost of living.

Also notice that the bounds for both the BBC approach and our approach are quite narrow.

is shows that, although we relax the representative agent assumption, we are still able to get

fairly reliable results.
18ese are computed on the basis of nonparametric Engel curve estimates.
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Table 1: Bounds on the mean Laspeyres Konüs cost of living index

Price indices Nonparametric Bounds
year L P T Lerner Pollak BBC bounds

1994 1.0000 1.0000 1.0000 [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000] [1.0000 1.0000]
1995 1.0275 1.0271 1.0273 [1.0086, 1.0357] [1.0086, 1.0275] [1.0250, 1.0275] [1.0249 1.0292]
1996 1.0604 1.0596 1.0600 [1.0358, 1.0708] [1.0358, 1.0604] [1.0591, 1.0604] [1.0574 1.0621]
1997 1.0860 1.0844 1.0852 [1.0483, 1.1019] [1.0483, 1.0860] [1.0830, 1.0860] [1.0819 1.0875]
1998 1.0972 1.0929 1.0951 [1.0327, 1.1236] [1.0327, 1.0972] [1.0932, 1.0972] [1.0900 1.0983]
1999 1.1242 1.1212 1.1227 [1.0709, 1.1470] [1.0709, 1.1242] [1.1205, 1.1242] [1.1180 1.1256]
2000 1.1716 1.1712 1.1714 [1.1480, 1.1886] [1.1480, 1.1716] [1.1689, 1.1716] [1.1692 1.1739]
2001 1.2066 1.2048 1.2057 [1.1456, 1.2437] [1.1456, 1.2066] [1.2025, 1.2066] [1.2025 1.2086]
2002 1.2206 1.2154 1.2181 [1.1301, 1.2742] [1.1301, 1.2206] [1.2143, 1.2201] [1.2122 1.2222]
2003 1.2618 1.2562 1.2591 [1.1659, 1.3263] [1.1659, 1.2618] [1.2556, 1.2607] [1.2534 1.2636]
2004 1.3094 1.3066 1.3080 [1.2243, 1.3679] [1.2243, 1.3094] [1.3048, 1.3089] [1.3042 1.3115]
2005 1.3666 1.3698 1.3682 [1.3115, 1.4247] [1.3115, 1.3666] [1.3648, 1.3665] [1.3658 1.3706]
2006 1.4181 1.4206 1.4194 [1.3400, 1.4839] [1.3400, 1.4184] [1.4157, 1.4178] [1.4164 1.4202]
2007 1.4655 1.4679 1.4667 [1.3966, 1.5276] [1.3966, 1.4655] [1.4633, 1.4655] [1.4644 1.4691]

Distribution of the cost-of-living Let us now have a look at the bounds on the quantiles of this

cost of living index over the population, a feature which is only identifiable using our results.

Figure 3 provides upper and lower bounds on the quantiles of the Laspeyres-Konüs cost of living

index, for the 10th (dashed), 50th (solid) and 90th (dotted) percentile. Again the base year is 1994

and the reference income is given by the median expenditure level in this year. From Table 1 we

already saw that the bounds on the mean price index were quite narrow. is narrowness is also

found for the bounds on the quantiles as can be seen from Figure 3. e width of the distribution

for a particular year depends to a large extent on the difference in relative slopes between the

base year (p0/x0) and the evaluation year (pt/xt). e closer the relative prices, the narrower

the difference between the largest and smallest cost of living for the particular year. e reason is

that the distribution is naturally bounded between the minimum and maximum values of y/x0

for which the budget hyperplanes corresponding to (pt, y) and (p0, x0) do not intersect. We see

that the distribution is narrow in the year 2000 and the widest in the year 2002 giving differences

in cost of living up to more than 5 percentage points between the 10th and 90th percentile. One
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Figure 3: Distribution of the cost of living
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noticeable feature about the figure is that there seems to be a considerable amount of heterogeneity

in the population although thewidth of the distribution remainsmore or less constant for the latter

5 years. Confidence intervals (using the subsampling procedure) and estimates for other quantiles

are given in Appendix D.

Figure 4 gives another illustration of the kind of questions that can be answered given the

framework in this paper. e figure gives bounds on the average of the Laspeyres-Konüs cost of

living for different starting quantiles,

∫
µh(pt,p0, x0,i)

x0,i

dP (h).
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Figure 4: Change in mean cost of living 1994-2007 for different starting quantiles of income
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Here, x0,i represents the income at the ith quantile of the income distribution in 1994, p0 are the

prices in 1994 and pt is the price vector for 2007. e figure gives an idea of the average price

increase (over the heterogeneous population) for households starting at different quantiles of the

income distribution in 1994. On average one sees an increase over the quantiles, whichmeans that

(on average) the cost of living for households starting at the lower end of the incomedistribution in

1994 was lower than for household starting at the higher end of the income distribution. In other

words, the households that started at the lower end of the income distribution had (on average)

a lower increase in the cost of living. Also, notice that the upper bound for the lowest quantile is

below the lower bound for the upper quantile. is shows that the average cost of living values

are significantly different (although the numbers are very close to each other in absolute terms).

e bounds in Figure 4 restrict the average of the Laspeyres-Konüs cost of living. We can also
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Figure 5: Distribution of the cost of living (poor households: 10th percentile of the income dis-
tribution in 1994; rich households: 90th percentile of the income distribution in 1994)
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bound the distribution of this cost of living index conditional on the income of households. Figure

5 gives bounds on the distribution of the Laspeyres-Konüs cost of living for poor households,

corresponding to the 10th percentile of the income distribution in 1994, and rich households,

corresponding to the 90th percentile of the income distribution in 1994.

From 1994 to 2002, we find that the distribution of the cost of living is similar for households

starting at the lower and upper ends of the income distribution. However, the results in Figure 5

also indicate that the cost of living increased more sharply for richer households aer 2002. is

confirms our results in Figure 4. Interestingly, the difference in (increase in) cost of living between

poor and rich households is somewhat less outspoken at the upper end (i.e. the 90th percentile)
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than at the lower end of the cost of living distribution (especially by 2007).

Distribution of the compensating variation Figure 6 shows the distribution of the compensat-

ing variation,

xt − µh(pt,p0, x0)

Here, x0 is taken to be the median income in 2000 and xt is the median income in cross section

t. is compensating variation gives the difference between the median income in year t and the

minimum income that would be necessary in order to obtain the welfare level at budget (p0, x0).

Values above zero indicate a welfare gain for a household at themedian income in year t compared

to a household at the median income in year 2000. We see that all quantiles are below zero for

the years 1994-1999 and 2001 and quantiles are above zero for the years 2005-2007. Once again,

there seems to be quite a lot of heterogeneity present in the population. For many years, the range

between the 10th and 90th percentile is around $400 per year which is substantial. e large

increase in 2005 is mainly due to a sharp increase in the median expenditure level in that year.

Distribution of demand As a last exercise, let us have a look at the bounds on the demanded

consumption shares for counterfactual price regimes. To keep focus, we restrict ourselves to the

computation of bounds for the own price effect for the food aggregate. We construct normalized

prices by dividing all cross sectional prices by the median income in the corresponding year, and

we take the mean of these normalized prices as a reference point. e reference income level

x0 is set at 1. We let the price for food range from 0.9 times its reference level to 1.05 times its

reference level. e prices of all others goods are held constant. Figure 7 presents the results

for three quantiles, the 10th (dashed), the median (solid) and the 90th (dotted). Again we see a

lot of heterogeneity in the demand curves over the population although the price responses look

very similar across the three quantiles. As is customary in revealed preference analysis, it is only
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Figure 6: Distribution of compensating variation, baseyear 2000
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possible to construct bounds on the counterfactual demands for prices in the convex hull of the

observed prices. is explains the large and simultaneous drop of all lowerbounds at the 3% price

increase, and the large and simultaneous jump of all upperbounds when prices are 6% below the

reference level.

5 Conclusions

In this paper, we used elementary revealed preference techniques together with nonparametric es-

timation techniques in order to bound the distribution of themoneymetric utility and the demand

functions over a population of heterogeneous households. Our methodology has two attractive
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Figure 7: Bounds on the demand shares
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features. First of all, the results are entirely nonparametric whichmeans that they are independent

on any functional form imposed on the underlying utility functions. Second, we impose mini-

mal conditions on the structure of the individual, unobserved heterogeneity. When we apply our

techniques to data from the US consumer expenditure survey, we find that our method gener-

ates narrow and informative bounds on the quantiles of the money metric utility function. Our

results also demonstrate that individual heterogeneity creates considerable variation in welfare

between households in the population (conditional on the same level of expenditure). We also

demonstrate how our results can be used to obtain informative bounds on the distribution of the

demand functions in counterfactual price-income situations.
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ere are several avenues for follow up research. First of all, we only briefly touched upon

the highly relevant topic of statistical inference. However, given that our data is obtained from a

random sample, measurement error and small sample biases influence our bounds, and statistical

inference becomes relevant. Next, it would be interesting to see how our methodology extends to

discrete choice settings. One way to incorporate discrete choices would be to consider a setting

where individuals make discrete choices in addition to continuous choices. Many of the results

from this paper readily extend to such setting. Alternatively one could imagine a setting where all

choices are discrete (see Manski (2007) and Sher, il Kim, Fox, and Bajari (2011) for a theoretical

account of stochastic revealed preferences recovery in such setting). It would be interesting to look

how the methodology developed in this paper transfers to such discrete choice setting. Finally,

it would be interesting to see how other (more strict) stochastic revealed preference axioms that

explicitly take into account transitivity may even further improve our bounds.
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A eWeak Axiom of Stochastic Revealed Preference

If rt,v(x, y)+rv,t(y, x) is larger than one, we see two possible solutions. A first solution is to allow

a certain fraction of the population to violate theWeakAxiomof Revealed Preference, i.e. a certain

subset of the population is considered to be irrational. Applying this solution would amount to

subtracting a certain percentage, that equals the fraction of irrational households, from rt,v(x, y)

and rv,t(y, x), thereby widening the range of possible values for Pr [vh(pt, x) ≥ vh(pv, y)]. A

second solution is to relax the rationality constraints for all households simultaneously. In order to

do this, we can consider an adaptation of an early proposal of Afriat (1973) for revealed preference

tests in a non-stochastic setting to our specific setting. In particular, we capture optimization error

by a so-called Afriat index e ∈ [0, 1]. For a given value of e, the new rationality criterion adjusts

condition (1) in the following way,

If e · x ≥ ptqh(pv, y), then vh(pt, x) > vh(pv, y).

Intuitively, we only check whether behaviour is rational while allowing the household to waste as

much as (1− e) of the income x by making irrational choices. Using this Afriat index, we can

construct the following probabilities,

ret,v(x, y) = Pr [e · x ≥ ptqh(pv, y)] .

40



e number ret,v(x, y) is increasing in e and r0t,v(x, y) = 0. Given this, there will always be a value

of e ∈ [0, 1] such that,

ret,v(x, y) + rev,t(y, x) ≤ 1.

e analysis could then proceed by replacing rt(x, y) by the numbers re∗t (x, y) where e∗ is either

fixed a priori or coincides with the largest number for which this inequality holds.

A second problem arises if rt,v(x, y) + rv,t(y, x) is considerably below 1. In such cases, the

bounds are not very informative. A solution is to impose a stronger stochastic revealed preference

condition. In the construction of rt,v(x, y) above, we only used information concerning the two

budget sets (pt, x) and (pv, y). In some cases, however, it is possible to include information on

additional budget sets and transitivity of the preference relation to obtain tighter bounds. One

such tightening relies on the fact that for any three distinct numbers a, b and c it is always the case

that,

Pr(a > c) ≥ Pr(a > b) + Pr(b > c)− 1.

Indeed, the probability that c is larger than b is given by 1 − Pr(b > c). As such, Pr(a > b > c)

is bounded from below by Pr(a > b) − (1 − Pr(b > c)). e conclusion then follows from the

fact that Pr(a > c) ≥ Pr(a > b > c). Rewriting above condition shows that it is equivalent to

the famous triangle inequality.

Pr(b > c) ≤ Pr(b > a) + Pr(a > c).

e triangle inequality has first been noted by Guilbaud (1953) and has been popularized by

Marschak (1960). e inequality is one of the key conditions in the literature on binary prob-

ability systems. is literature, which is closely related to the literature on stochastic revealed
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preference theory, tries to characterize all collections of binary probabilities over a finite set of al-

ternatives that are induced by probability distributions over the family of linear orders (preference

relations) on this set.

If we apply above condition to our setting and use the previously established bounds, we obtain

that for all t, v, w ∈ T and all incomes x, y, z,

Pr [vh(pt, x) ≥ vh(pv, y)] ≥ Pr [vh(pt, x) ≥ vh(pw, z)] + Pr [vh(pw, z) ≥ vh(pv, y)]− 1,

≥ rt,w(x, z) + rw,v(z, y)− 1.

In cases where rt,v(x, y) is lower than

max
w,z

{rt,w(x, z) + rw,v(z, y)− 1} ,

this improves the lower bound on Pr[vh(pt, x) ≥ vh(pv, y)]. Of course this tightening of the

bounds can be iterated until no further improvements are possible. If the range is still too wide,

further tightening could still be obtained by using other, thoughmore elaborate ‘binary probability

system’ conditions (see, for example, Fishburn (1992) for an overview of the various kinds of

conditions that could be imposed).

B Proof of consistency and asymptotic normality of l̂t(π)

In this appendix we demonstrate the consistency and asymptotic normality of ℓ̂t(π). e proofs

are similar to Cai (2002). For ease of notation, we write ℓ̂ for ℓ̂t(π) and ℓ for ℓt(π). We first show

that ℓ̂ →P ℓ.
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Consistency Given that r̂t,v(x, y) →P rt,v(x, y) and both functions are monotone in y and

bounded, it follows from Tucker (1967, eorem 1) that,

sup
y

|r̂t,v(x, y)− rt,v(x, y)| →P 0.

For any ε > 0, set,

δ(ε) = min{π − rt,v(x, ℓ+ ε), rt,v(x, ℓ− ε)− π} > 0.

is uses the fact that rt,v(x, y) is strictly decreasing in y at (x, y).

Lemma 1. If |ℓ− ℓ̂| ≥ ε then |rt,v(x, ℓ̂)− r̂t,v(x, ℓ̂)| ≥ δ(ε).

Proof. Assume first that ℓ ≥ ℓ̂. enwe have that ℓ̂ ≤ ℓ−ε. is implies rt,v(x, ℓ̂) ≥ rt,v(x, ℓ−ε).

As such,

rt,v(x, ℓ̂)− r̂t,v(x, ℓ̂) ≥ rt,v(x, ℓ− ε)− π ≥ δ(ε).

is shows that |rt,v(x, ℓ̂)− r̂t,v(x, ℓ̂)| ≥ δ(ε).

If ℓ < ℓ̂ we have that ℓ̂ > ℓ+ ε and consequentially, rt,v(x, ℓ̂) ≤ rt,v(x, ℓ+ ε). As such,

r̂t,v(x, ℓ̂)− rt,v(x, ℓ̂) ≥ π − rt,v(x, ℓ+ ε) ≥ δ(ε).

Again, we see that |rt,v(x, ℓ̂)− r̂t,v(x, ℓ̂)| ≥ δ(ε). As such, we see that for every ε > 0,

Pr
(
|ℓ− ℓ̂| ≥ ε

)
≤ Pr

(
|r̂t,v(x, ℓ̂)− rt,v(x, ℓ̂)| ≤ δ(ε)

)
.

As the right hand side goes to zero by consistency of r̂t,v(x, y) for n → ∞, h → 0 and nh → ∞,

the le hand side also goes to zero. Given this, we see that ℓ̂ →P ℓ.
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Asymptotic normality Let us now look at the asymptotic distribution of ℓ̂n. We know that

r̂t,v(x, y) has the following limiting distribution,

√
nh

V (x, y)1/2
(r̂t,v(x, y)− rt,v(x, y)−B(x, y)) → N (0, 1),

Where B(x, y) = O(h2) is the asymptotic bias and V (x, y) is the asymptotic variance. We first

consider two lemma’s.

Lemma 2. If εn/h = o(1), then,

r̂t,v(x, y + εn)− r̂t,v(x, y) =
∂rt,v(x, y)

∂y
εn + oP (εn) + oP (h

2) + oP ((nh)
−1/2).

Proof. e proof involves straightforward but long and tedious computation. As such, it is avail-

able upon request.

Lemma 3. Fix a number v < ∞ and define εn =
vV (x,y)1/2√

nh
−B(x,y)∣∣∣∣∣∣

∂rt,v(x, y)

∂y

∣∣∣∣∣∣
. en if h → 0, nh3 → ∞ and

nh5 = O(1), then,

1. εn/h = o(1).

2.
√
nh o(εn) = o(1).

Proof. Easy.

Now we are ready to demonstrate the following,

√
nh

∣∣∣ rt,v(x,ℓ)∂ℓ

∣∣∣
V (x, ℓ)1/2

ℓ̂n − ℓ+
B(x, ℓ)∣∣∣∂rt,v(x,ℓ)∂ℓ

∣∣∣
 →d N(0, 1).
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Proof. Denote by Φ(v) the normal cumulative distribution function, then

Pr

(nh)1/2

∣∣∣∂rt,v(x,ℓ)∂ℓ

∣∣∣
V (x, ℓ)1/2

ℓ̂n − ℓ+
B(x, ℓ)∣∣∣∂rt,v(x,ℓ)∂ℓ

∣∣∣
 ≤ v

 ,

= Pr

ℓ̂n − ℓ ≤
vV (x,ℓ)1/2

(nh)1/2
−B(x, ℓ)∣∣∣∂rt,v(x,ℓ)∂ℓ

∣∣∣
 ,

= Pr
(
ℓ̂n − ℓ ≤ εn

)
,

= Pr
(
ℓ̂n ≤ εn + ℓ

)
,

= Pr
(
r̂t,v(x, ℓ̂n) ≥ r̂t,v(x, ℓ+ εn)

)
,

= Pr

(
r̂t,v(x, ℓ̂n) ≥ r̂t,v(x, ℓ) +

∂rt,v(x, ℓ)

∂ℓ
εn + oP (εn) + oP (h

2) + oP ((nh)
−1/2)

)
,

= Pr

(
r̂t,v(x, ℓ̂n)− r̂t,v(x, ℓ) ≥ −

∣∣∣∣∂rt,v(x, ℓ)∂ℓ

∣∣∣∣ εn + oP (εn) + op(h
2) + op((nh)

−1/2)

)
,

∼ Pr

(
(nh)1/2

1

V (x, y)1/2

(
r̂t,v(x, ℓ)− r̂t,v(x, ℓ̂n)−B(x, ℓ)

)
≥ −v

)
= Pr

(
(nh)−1/2 1

V (x, y)1/2
(r̂t,v(x, ℓ)− rt,v(x, ℓ)−B(x, ℓ)) ≥ −v

)
→d Φ(v).

C Construction of aggregates

Food is an aggregate of cereals, bakery products, beef, pork, poultry, seafood, other meat, eggs,

milk products, other dairy products, fresh fruit, fresh vegetables, processed fruit, processed veg-

etables, sweets, fat and oils, non-alcoholic beverages, prepared food, snacks and condiments.

Other non-durables contain expenditures on alcohol consumption, tobacco, clothes (for all

household members), footwear, reading material, stationery, school supplies, cleaning products,

garden supplies, household textile, non-durable housewares, medical products, personal care

products, audio-visual equipment, recreational goods, pet goods and vehicle expenses.
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Services include utilities, media bills, repair services, insurance, postal services, gasoline, vehi-

cle expenses (services), public transportation, medical care services, personal care services, recre-

ational services, home services, rental services, membership fees, school fees, other fees, pet ser-

vices and care services.

D Confidence intervals

To compute the Bonferroni intervals we followed a subsampling procedure (in line with Politis,

Romano, andWolf (1999)). Subsampling is similar to the bootstrap procedure but the samples are

smaller and the draws are obtained without replacement. Consider a dataset of size n and an esti-

mator ĝn which converges at a rate such that τn(ĝ− g) converges to a non-degenerate asymptotic

distribution for n → ∞. In our case, τn =
√
nhn where hn is the bandwidth. e subsampling

procedure proceeds by taking (without replacement) subsamples of size m and compute the as-

sociated estimator g∗m. en, under very weak conditions, it can be shown that for m → ∞,

m/n → 0 and τm/τn → 0 as n → ∞, the statistic τm(g∗ − ĝ) converges to the same asymptotic

distribution as τn(ĝ − g).

We apply the subsampling approach to the distribution of the (Laspeyres-Konüs) cost of living

index using 999 subsamples of sizem ≈
√
n.19 Table 2 presents our original estimates of upper and

lower bounds on the quantiles of the Laspeyres-Konüs cost of living index and the corresponding

asymptotic 95% confidence intervals for the setting in Figure 3.

19Other values of m give similar results.
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Table 2: 95% confidence bounds on the distribution of the Laspeyres-Konüs cost of living index -
bounds: sample estimates of lower and upper bounds on cost of living.

year 10th percentile 30th percentile 50th percentile 70th percentile 90th percentile

bounds 1994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CI 1994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

bounds 1995 1.0186 1.0235 1.0228 1.0279 1.0255 1.0303 1.0277 1.0321 1.0303 1.0342
CI 1995 1.0176 1.0246 1.0219 1.0286 1.0247 1.0308 1.0270 1.0326 1.0295 1.0347

bounds 1996 1.0506 1.0549 1.0554 1.0607 1.0584 1.0634 1.0606 1.0659 1.0638 1.0685
CI 1996 1.0491 1.0561 1.0543 1.0615 1.0575 1.0640 1.0599 1.0665 1.0630 1.0691

bounds 1997 1.0697 1.0761 1.0784 1.0850 1.0832 1.0896 1.0881 1.0933 1.0934 1.0974
CI 1997 1.0678 1.0781 1.0767 1.0862 1.0819 1.0905 1.0867 1.0942 1.0922 1.0983

bounds 1998 1.0697 1.0787 1.0845 1.0940 1.0933 1.1018 1.0998 1.1082 1.1090 1.1155
CI 1998 1.0661 1.0823 1.0815 1.0961 1.0909 1.1035 1.0976 1.1096 1.1067 1.1171

bounds 1999 1.1028 1.1094 1.1128 1.1218 1.1198 1.1285 1.1271 1.1339 1.1343 1.1394
CI 1999 1.1004 1.1120 1.1109 1.1235 1.1180 1.1297 1.1255 1.1350 1.1327 1.1407

bounds 2000 1.1590 1.1646 1.1654 1.1704 1.1694 1.1749 1.1730 1.1779 1.1782 1.1819
CI 2000 1.1579 1.1660 1.1643 1.1714 1.1684 1.1756 1.1720 1.1785 1.1769 1.1828

bounds 2001 1.1799 1.1873 1.1934 1.2021 1.2036 1.2111 1.2126 1.2185 1.2230 1.2274
CI 2001 1.1774 1.1904 1.1910 1.2041 1.2008 1.2127 1.2099 1.2199 1.2206 1.2291

bounds 2002 1.1798 1.1902 1.1987 1.2131 1.2135 1.2262 1.2262 1.2367 1.2449 1.2497
CI 2002 1.1766 1.1949 1.1955 1.2161 1.2107 1.2286 1.2230 1.2390 1.2407 1.2523

bounds 2003 1.2157 1.2276 1.2405 1.2519 1.2545 1.2676 1.2684 1.2798 1.2901 1.2948
CI 2003 1.2117 1.2324 1.2366 1.2553 1.2516 1.2705 1.2651 1.2823 1.2855 1.2975

bounds 2004 1.2735 1.2792 1.2918 1.3004 1.3044 1.3147 1.3174 1.3259 1.3350 1.3397
CI 2004 1.2697 1.2832 1.2887 1.3035 1.3015 1.3172 1.3147 1.3281 1.3317 1.3425

bounds 2005 1.3360 1.3402 1.3537 1.3581 1.3659 1.3710 1.3779 1.3819 1.3931 1.3946
CI 2005 1.3325 1.3434 1.3506 1.3607 1.3631 1.3732 1.3749 1.3839 1.3901 1.3973

bounds 2006 1.3849 1.3890 1.4033 1.4083 1.4171 1.4223 1.4308 1.4350 1.4430 1.4486
CI 2006 1.3809 1.3926 1.4000 1.4115 1.4139 1.4250 1.4268 1.4371 1.4404 1.4520

bounds 2007 1.4328 1.4385 1.4523 1.4571 1.4640 1.4696 1.4754 1.4813 1.4933 1.4952
CI 2007 1.4298 1.4421 1.4490 1.4600 1.4612 1.4722 1.4728 1.4835 1.4899 1.4979
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