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1 Introduction
Contribution to global public goods is one of the domains where international cooperation
matters the most. Actors, which can be states, countries or regions, decide whether to act
together for their common interest on issues such as global warming, production of scientific
knowledge, international security or preservation of natural resources. These issues have
in common that the establishment of a cooperative relationship leads to an improvement
in the total provision of a global public good. Typical cooperation takes the form of a
coalition, where members delegate decision-making to a centralized level, which maximizes
their total surplus.
This paper investigates the causes and consequences of strategic decentralization of

decision-making in a coalition. First, we discuss the potential strategic incentive for a
coalition to decentralize the decision-making about the provision of a global public good.
Decentralization is a commitment to free riding on other actors: the members of a coalition
may all benefit from acting independently if this incites other actors to provide more pub-
lic good. Second, we take one step back and show that a group of actors may collectively
benefit from not creating the institutions that make cooperation possible, if its creation
induces the decentralization of other coalitions.
Our approach is in deliberate contrast with the traditional view of coalition formation

according to which individual actors seek to cooperate on a single issue. In particular, the
literature on self-enforcing International Environmental Agreements (IEAs) has developed
a very pessimistic view on the capacity of individual countries to form coalitions providing
a global public good, suggesting that “an IEA is unable to improve much on the noncoop-
erative outcomes” (Barrett, 2005, p.1480). It is because members often have incentives to
quit the coalition and become free riders. On the contrary, we start by assuming that coun-
tries belong to pre-existing groups - bounded by a common history of cooperation, common
interest, or mutual trust - and are able to choose the institutional design to maximize their
combined surplus.
As noted by Kosfeld et al. (2009), political and economic institutions with a coercive

power on its members do exist in practice. Once an institution and the mutual trust
between its members exist, nothing prevents them to vote unanimously to extend the
scope of the institution’s intervention, including potential compensations. For instance,
agriculture was not part of the issues on which the institutions of the European Union were
built. But there was no process of coalition formation on the common agricultural policy.
It was an unanimous choice to extend the scope of the UE, while the British government
managed to receive a rebate on its contribution to the EU budget as a compensation.1
However, while coalitions exist and are relatively stable over time, it is a striking fact that

they often act in a decentralized way on specific global issues. Two well-known examples
are the EU and the US.

1In 1984, the UK negotiated a mechanism (the “Fontainebleau agreement”) wherein it automatically gets
back about two-thirds of the difference between what it contributes to and what it receives from the
EU budget at the end of each year (Lowe et al., 2002).

2



Individual member countries of the European Union have long acted in a decentralized
way on most military interventions (Howorth, 2001; Kirchner, 2006). This includes con-
flicts on the European continent such as the Balkan wars in the 1990s, where most of the
leadership was left to the US (Gordon, 1997, p.74). Since the early 2000s, some smaller-
scale military interventions have been made on behalf of the European Union’s Common
Security and Defense Policy (CSDP) (Kaldor and Salmon, 2006), but when the 2011 crisis
in Libya escalated, “no one apparently seriously considered intervention under the frame-
work of the CSDP” and “the European Union stood on the sidelines and watched as France
and the United Kingdom, acting within a NATO framework, intervened militarily on the
Union’s doorstep” (Menon, 2011, p.75).
The United States is a federal country whose centralized level of government takes deci-

sions on several global issues, such as national defense. However, regarding global climate
change, the policy of the US has always been “bottom up,” in that the central government
delegates to states the choice of taking constraining decisions on abatement targets (Lut-
sey and Sperling, 2008).2 A consequence has been the refusal of the US administration to
commit on abatements, making the European Union complain about the “lack of American
Leadership.”3
A typical explanation of such phenomena is that centralized decision fails to be effective,

either because coalition members have too different preferences to reach an agreement,
or because proper compensations cannot be efficiently designed on all issues. Our first
point provides an alternative explanation. We claim that decentralization is strategic if
it is in the joint interest of the coalition members. Indeed, it may allow the member
countries to commit to free riding in the presence of other active coalitions or countries.
Decentralization as a means to free ride is derived from the fact that smaller players have
less incentive to contribute in a noncooperative game of public goods (see for instance
Olson and Zeckhauser, 1966). Hence a coalition prefers to decentralize if the benefits to
its members from their free riding on the actors outside the coalition are higher than their
gain from cooperating within the coalition.
A consequence of such a strategic behavior is that a unipolar world with a single coalition

in addition to noncooperative countries can sometimes provide more public good than
the multipolar world in which these noncooperative countries also form a coalition. As
a matter of fact, a large coalition with small enough rivals usually has no incentive for
decentralization. On the contrary, the formation of a smaller coalition by these initially
noncooperative rivals may lead to a strategic decentralization of the larger coalition.
Our second point is deduced from this reasoning: a group of actors susceptible to co-

operation but without pre-existing institutions can strategically choose whether or not,
according to their common interest, to activate their coalition by building the necessary
institutions. It can turn out to be detrimental for a group of countries to activate their

2The US government seems, however, able to deal in an efficient and centralized way on environmental
issues with a national impact only, such as acid rains, as shown by the Bush senior administration in
the early 1990s (Joskow et al., 1998).

3Andreas Carlgren, Sweden’s Environment Minister talking on behalf of the EU presidency (Copenhagen
talks, 2009, cited by The Guardian, November 2, 2009).
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coalition if it results in the strategic decentralization of an existing coalition. If these coun-
tries happen to be more sensitive to the level of public good than the others, the outcome
can be worse for them, because their pro-public-good feature makes them exploited even
more aggressively by the free riders. It is thus beneficial for each country in this group to
avoid creating an active coalition in the first place, so that they are committed to not being
committed to the provision of public good.
This scenario can be applied to the recent efforts of the so-called BRICS (Brazil, Russia,

India, China and South Africa) to establish a political institution, holding annual meet-
ings since 2009. While the five countries share similar concerns about “the international
dominance of the United States, the threat of terrorism from religious fundamentalists and
ethnic movements, and the need to prioritize economic development,” they were “reluctant
to share any burdens” (Pant, 2013). Indeed, till 2014, the only substantial cooperative in-
stitution launched by the BRICS had been the project of a joint development bank, making
Rodrik (2013) write that “[what] the world needs from the BRICS is not another devel-
opment bank, but greater leadership on today’s great global issues. The BRICS countries
are home to around half of the world’s population and the bulk of unexploited economic
potential. If the international community fails to confront its most serious challenges -
from the need for a sound global economic architecture to addressing climate change - they
are the ones that will pay the highest price.”
Observers often take the behavior of these countries as a sign of lack of interest in the

global public goods, while they actually care much more than they appear to do. We claim
that their reluctance to further organize as an active coalition is not due to their seemingly
carelessness but is indeed a strategic behavior supported by our second point. If building
institutions that increase trust and cooperation among a certain group of countries leads
the rest of the world to expect their further cooperation on other issues, these countries
may do better by remaining noncooperative.
The difference between decentralization and non-activation is crucial: an active coalition

with existing institutions may end up choosing decentralization, but only if it is profitable
for all the members given the expectation on the behavior of other coalitions. In contrast, a
group of countries may together benefit from deliberately avoiding creating institutions in
the first place, even if its members would unanimously choose to centralize if the institutions
existed.
This paper adopts a game theoretic approach. We study a game of pollution emission

because of the familiarity of the reader with the subject as well as the existing extensive
literature in this field. However, our results hold in a more general setting of public goods.
Consider a game taking place over three stages. In the first stage, each inactive (potential)
coalition decides whether or not to activate the coalition. Coalitions already activated do
nothing at this stage. In the second stage, active coalitions decide to centralize or decen-
tralize the choice of abatement levels. In the third stage, active centralized coalitions and
individual countries (including the member countries of the inactive coalitions and those
of the active but decentralized coalitions) play a noncooperative global public good game.
In our setting, this underlying global public game is just the emission game discussed in
Carraro and Siniscalco (1993). In such a game, the public good is the aggregate abatement,
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i.e. the aggregate pollution not emitted. Each player chooses her emission quantity in the
limit of her capacity, characterized by her weight. A player benefits from her abuse of
the environment as a reservoir for her own emissions, but also suffers from the aggregate
pollution.
We look for the subgame perfect Nash equilibria of this three-stage game. In Section 2, we

study the emission game in the last stage and characterize its unique equilibrium. In Section
3, we discuss strategic decentralization in the second stage. After deriving conditions for
decentralization to be disadvantageous in the general case, we then focus on two-coalition
decentralization games and give a full description of their equilibria. In Section 4, we
turn to the first stage of the game by defining the game form in the general setting, then
clarify under which conditions it is in the common interest of the members of a potential
coalition to become active facing another active coalition. Section 5 provides four numerical
examples. The first example shows how the choice between centralizing and decentralizing
made by a coalition in the second stage depends on the existence of other active coalitions.
The second example displays a situation where two coalitions simultaneously choose to be
active and centralized. The third example exhibits the possibility for a world with one
large active coalition and small individual countries to provide more public good than a
world in which these independent countries have formed a second active coalition, even if
its size is smaller than the first one. The last example shows that a group of individuals
sharing a strong preference for the public good may be better off by not forming a coalition,
when they confront some coalition with milder interest in the public good. In Section 6,
we discuss how the variation in the characteristics of the players, such as their size and
preference for the public good, change their decision in the three stages of the game. Section
7 concludes. All proofs and some auxiliary results are collected in the Appendix 2.

Related literature

To our knowledge, this paper constitutes the first attempt to study the strategic decen-
tralization of coalitions in the context of global public good games.
The literature on fiscal federalism has generally taken as given that public goods (such

as national defense) were precisely the cause of the formation of a federation (Oates, 2005,
p.366), but not a cause of secession or decentralization. However, economists have long
been interested in the formation and the maintenance of cartels producing public goods.
The generally studied procedure of coalition formation is a two-stage game. In the first
stage, countries decide whether or not to join a coalition. In the second stage, each coalition
acts as a single player who maximizes the aggregate welfare of its members. This setting
presumes that, conditional on being members of a coalition, countries are able to sign
binding contracts and punish deviators. The three most widely considered procedures
for the first stage are respectively proposed by Bloch (1996), Ray and Vohra (1997) and
d’Aspremont et al. (1983).4

4Yi (1997) presents number of properties of those different rules for the creation of coalitions with either
positive or negative externalities. Belleflamme (2000) allows for asymmetric countries in an open
membership game with negative externalities and McGinty (2007) for one with positive externalities.
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This approach has been at the basis of most of the economic literature on self-enforcing
IEAs, the most studied case of coalition formation concerning global public goods (see for
instance Barrett, 1994 and Barrett and Mattei, 1993). Since individual countries have a
strong incentive to free ride, these models generally predict that IEAs can achieve little
more than a noncooperative framework (Barrett, 2005).5 Nevertheless, in a global public
good game, the coalition maximizing the aggregate welfare of all the players (i.e. the grand
coalition) should be feasible with transfers and/or credible punishment of deviators (see
Carraro and Siniscalco, 1993 and Carraro et al., 2006 for a discussion of this argument).6
There must however be a history of sequential commitments, in the sense that a first
group of countries commit to act together, and then jointly choose to expand the coalition
by providing a transfer to an additional member. Ray and Vohra (2001) show that the
existence of transfers is not sufficient to ensure the formation of the grand coalition when
countries are free to sequentially offer a new partition, even after entering a coalition.
The novelty of our approach is that, instead of focusing on the motive of individual coun-

tries to join or quit coalitions, we consider pre-existing coalitions capable of implementing
any kind of transfers and punishment schemes. We define strategic decentralization as the
collective decision of a group of countries to act separately on a certain issue, in order to
maximize their total surplus. This specification is similar to the idea of players “delegating”
themselves in congestion games (Sorin and Wan, 2013).
This result of profitable decentralization is also reminiscent of at least two important

results in Industrial Organization. First, Salant et al. (1983) show that in a Cournot
environment, a horizontal merger may lower the profits of firms. Second, in a similar
environment, Baye et al. (1996) show that large firms may benefit from divisionalisation
and franchising. If a firm can ex-ante commit itself to delegating the production choice to
several smaller franchises, this is equivalent to a commitment to a higher level of production.
However, these papers consider comparative statics without studying the strategic impact
of one firm’s divisionalisation on the decision of other firms to centralize or not.
Our focus is further close to two recent papers on the link between country size, central-

ization and the provision of global public goods. First, Eckert (2003) shows that a federal
government which delegates the negotiation and enforcement power to the local govern-
ment of a pollution-producing region may benefit from a better position in the negotiation
over a climate agreement with another country, because its disagreement point is more
favourable. Second, Buchholz et al. (2014) shows that if a group of countries can choose
a matching ratio for their contributions to a public good, the existence of a coalition may
decrease the aggregate level of public good. However, although the first paper discusses
a country’s strategic choice of a certain form of constitution, it considers neither decen-

5More recent work (Barrett, 2013; Foucart and Garsous, 2013) shows that this result holds because of the
hypothesis of the convexity of pollution costs, hence the concavity of the benefits from the abatements.
A threshold leading to a catastrophe, as it is the case with climate change, could lead to a large abating
coalition in equilibrium if identified with sufficiently high precision.

6Most of the environmental literature focuses on a single coalition. In an open membership game, multiple
coalitions may coexist in equilibrium, but must be stand-alone stable, in the sense that no individual
should be better off by deviating (Yi, 1997).
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tralization nor coalition formation, where as the second paper does not consider strategic
interaction among (potential) coalitions beyond the last stage of contribution to the global
public good.

2 Last stage: Emission game
To solve the three-stage game by backward induction, we begin the analysis by the last
stage. The players in this stage play an emission game where the public good is the
aggregate abatement of all players, i.e. the aggregate pollution not emitted. This section
gives the definition and some important properties of an emission game.7
There are N players, indexed by i ∈ N = {1, ..., N}. A player i of a strictly positive

weight mi is either an autonomous country or a centralized coalition composed of a finite
number of member countries. Centralized coalitions choose their aggregate quantity of
emissions, in order to maximize their aggregate welfare. The weight of a country char-
acterizes its capacity of pollution. For instance, the level of emissions from a country of
weight 1 is between 0 and 1. The weight of a coalition is the total weight of its member
countries. Let the total weight of all the players be denoted by M =

∑
i∈N mi.

Every player i chooses a level of emissions qi ∈ [0,mi]. The profile of choices is a vector
q = (q1, . . . , qN). The aggregate level of emissions is denoted by Q =

∑
i∈N qi ∈ [0,M ].

The total utility function of player i when the players’ emission profile is q is

(1) Ui(q) = Gi(qi)− siFi(Q),

where Gi(qi) is the player’s benefit from her own emissions (by using the environment for
her production or consumption), si > 0 is the measure of the player’s sensitivity to global
pollution, and Fi(Q) stands for the loss caused by the aggregate level of emissions. The
fact that the loss depends on the aggregate level of pollution implies that each player’s
emissions generate a negative externality on all the others. Besides, the sensitivity of a
coalition to global pollution is the common sensitivity of its member countries.
In this paper, we consider the following specific forms of functions Gi and Fi:

Gi(qi) = mi · g
( qi
mi

)
,(2)

Fi(Q) = mi · f(Q).(3)

The interpretation is as follows. When comparing different players’ welfare, it is neces-
sary to discard the influence of their different weights, so that all other things held constant
the utility of a group of players is equal to the sum of the utilities of the group members.
The gain from one’s own pollution and the loss from the aggregate pollution are thus mea-
sured for per-unit of weight, and these functions should be symmetric across the countries.
Formula (2) signifies that player i’s gain by each unit of her weight from her own emissions

7We show in Appendix 1 that our emission game is identical to a public good provision game.
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into the environment, g( qi
mi

), depends only on her per-unit pollution level. Owing to this
assumption, two countries, both having weight 1 and emitting a quantity 1

2
, gain in sum

2g(1
2
). This is the same as a country of weight 2 gains from emitting a quantity 1. Simi-

larly, formula (3) means that each unit of weight of each player bears the same loss f(Q)
from the aggregate emissions.
The (per-unit) utility function of player i is thus:

(4) ui(q) =
Ui(q)

mi

= g
( qi
mi

)
− sif(Q).

Assumption 1. f is defined from R+ to R+. It is twice differentiable, strictly increasing
and strictly convex.
g is defined from [0, 1] to R+. It is twice differentiable, strictly increasing and strictly

concave. Besides, limx→0+ g(x) = +∞, g′(1) > 0.

The assumptions on f signify marginally increasing damage resulting from the aggregate
pollution, whereas those on g signify marginally decreasing returns on a player’s use of the
environment as a reservoir for her own emissions.
It follows immediately from Assumption 1 that, given any choice of the others, player

i’s utility ui is always strictly convex in her own choice qi. Indeed, ∂2ui(q)

∂q2i
= 1

m2
i
g′′( qi

mi
) −

sif
′′(Q) < 0.

Denote this emission game by Γ(N ). A strategy profile q is a Nash equilibrium if for all
player i ∈ N ,

(5) ui(qi,q−i) = max
0≤x≤mi

ui(x,q−i),

where q−i = (q1, . . . , qi−1, qi+1, . . . , qN).

Lemma 1. An emission game admits a unique Nash equilibrium.

As the following lemma shows, a player’s contribution and utility at the equilibrium
depend on her weight and her pollution sensitivity.

Lemma 2. At the equilibrium q of the emission game, consider two players i and j.

(i) If they have the same weight and the same sensitivity, then they produce the same
amount of public good and have the same per-unit utility.

(ii) If they have the same sensitivity but different weights, then either the bigger one
produces strictly more public good than the smaller one w.r.t. their respective weight,
while receiving a strictly lower per-unit utility, or neither of them produces any public
good so that both receive the same per-unit utility.
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(iii) If they have the same weight but different sensitivity, then either the more sensitive
one produces strictly more public good than the less sensitive one w.r.t. their respec-
tive weight, or neither of them produces any public good. The more sensitive player
has strictly lower utility.

Here “player i producing more public good than player j w.r.t. their respective weight”
means qi

mi
≤ qj

mj
.

The following lemma further shows that when a player is “small” enough, it always
produces as much pollution as its capacity permits, providing no public good at all.

Lemma 3. Given the total weight of the players and the range of their sensitivities, there
is a threshold ε > 0 such that any player who has a weight inferior to ε never contributes
to the production of public good.

Lemma 2(ii) and Lemma 3 recover the well-known result (Olson and Zeckhauser, 1966)
that being small is an advantage in the contribution to a global public good. Roughly
speaking, smaller players free ride more by producing more pollution per unit of weight.
Intuitively, the marginal return from a unit of investment in the public good is increasing in
the weight of a player. Hence, being small is a commitment to investing less in the public
good. A small player can thus more easily free ride on the others, and her equilibrium
utility is higher. However, the pollution sensitivity should also be taken into account as
Lemma 2(iii) reveals. A small country that is highly sensitive to pollution may abstain
from polluting too much.

3 Second stage: Strategic decentralization
This section focuses on the second stage of the game where strategic choices of decentraliza-
tion are taken. We first give the definition of a decentralization game, then provide some
general results on the externalities that unilateral decentralization generates on the other
players as well as on the aggregate provision of the public good, and finally investigate in
detail a specific class of strategic decentralization games.

3.1 A decentralization game

First define a strategic decentralization game where active coalitions can simultaneously
choose to decentralize.
There are a finite number of players. The player set N is made up of two disjoint subsets
N1 and N2. A player k ∈ N1 is an autonomous country. A player k ∈ N2 is a coalition
composed of a finite number nk of countries. Denote the finite set of member countries of a
coalition k by Jk. For the sake of simplicity and without loss of generality, we assume that
the member countries of a coalition k have the same weight mk

nk
. The coalition decentralizes

if each of its member countries is free to choose its quantity of emissions.
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A decentralization game, denoted by D(N ), is defined as follows. Autonomous countries
have no choice to make. Each coalition has two choices at this stage: centralization (C),
i.e. to act as one player maximizing the aggregate utility of its member countries in the
third stage, and decentralization (D), i.e. to let the member countries act independently
in the third stage.
Once all the coalitions have made their choice, an emission game is induced by the pure

strategy profile s = (sk)k∈N2 . It is played in the third stage by (i) the initially autonomous
countries, (ii) the member countries of the coalitions that have chosen decentralization,
and (iii) the coalitions that have chosen centralization. Denote the set of these players by
N s. Section 2 shows that a unique equilibrium exists in emission game Γ(N s). Let us
define the players’ utilities in N associated to a pure strategy profile s in the following
manner:
The utility of an initially autonomous country (l ∈ N1) or a coalition having chosen

centralization (l ∈ N2 such that sl = C) is its equilibrium utility in the induced emission
game Γ(N s):

vl(s) = ul(Γ(N s)).

The utility of a coalition having chosen decentralization (k ∈ N2 such that sk = D) is the
sum of the equilibrium utilities of its member countries in Γ(N s).

vk(s) =
1

nk

∑
kj∈Jk

ukj(Γ(N s)).

In particular, since the member countries of k have the same weight and the same sensitivity
to pollution, they have the same equilibrium utility in the induced emission game. Hence
vk(s) is the common equilibrium per-unit utility of all its member countries in Γ(N s).
To simplify the notation, we denote a strategy profile s by the list of coalitions that

choose decentralization: {k : k ∈ N2, sk = D}. For example, if only one coalition k
decentralizes, the new set of players is simply denoted by N (k) = N ∪ Jk \ {k}.
Two remarks are necessary here.
First, member countries make the choice between centralization and decentralization

of a coalition in a collective manner. In the case of centralization, transfers between
countries can be made so as to ensure that all the member countries achieve the same
per-unit utility. In the case of decentralization, they still receive the same per-unit utility
in the induced emission game because of their equal weight. Hence a collective decision of
(de)centralization can effectively be obtained without controversy. Had countries different
weights, the same results could be obtained using transfers at the decentralization stage.
If the aggregate utility of a coalition is higher using decentralization, there exist transfers
to be implemented in the second stage so that decentralization is Pareto-improving within
the coalition. Indeed, transfers made in the decentralization stage have no impact on the
incentives of independent countries in the third (emission) stage.
Second, different from the literature on endogenous coalition formation, we discard the

possibility that certain member countries of a coalition form one or several smaller coali-

10



tions, for two reasons. First, when the coalition decentralizes the decision-making, it is
natural to assume that this power is returned to the original components of the coalition in-
stead of some newly formed sub-coalition(s). Second, even if we allow new sub-coalitions,
they can either be created according to a joint decision of the decentralizing coalition’s
members or come into existence through an endogenous coalition formation process. On
the one hand, if it is the member countries of the coalition who have jointly and delib-
erately chosen to divide their coalition into certain sub-coalitions, this choice needs to be
justified by their anticipation of what will happen to these sub-coalitions. For example,
they must anticipate whether the sub-coalitions will continue to decentralize so that they
decompose themselves to even smaller sub-sub-coalitions. Also, they need to anticipate
the behavior of the newly formed sub-coalitions of the rival coalitions, and so on. Not
only is this approach of reasoning incoherent with our initial assumption that a coalition
decentralizes if it is in the common interest of each of its member countries, but also it
makes the analysis so complicated that we can draw no conclusion from the outcome of
such recursive behaviors. On the other hand, though individual countries may form an
endogenous sub-coalition spontaneously, it is irrelevant to our analysis, which focuses on
the motive of an existing coalition’s decentralization instead of coalition’s formation.

3.2 Externality of decentralization

This subsection examines the consequences of the unilateral decentralization of one coali-
tion. In the remaining of this section, by “initially” we mean at the outcome of the emission
game where all the activated coalitions are centralized.

Lemma 4. If a coalition initially contributes to the public good, then its unilateral decen-
tralization has the following effects:

(i) The aggregate contribution to the public good is strictly decreased.

(ii) Each of the other players contributes more to the public good while receiving a strictly
lower utility.

(iii) The total contribution to the public good from the members of the decentralized coali-
tion is strictly decreased.

If a coalition initially contributes no public good, then its unilateral decentralization does
not change the contribution and the utility of any other player; the total contribution from
its own members does not change either.

Lemma 2 asserts that larger groups contribute more to the provision of public good. As
a matter of fact, their unilateral decentralization also exerts greater negative externalities
under some mild conditions.

Lemma 5. Consider two coalitions with the same sensitivity to pollution but different
weights. Suppose that the larger one initially contributes to the public good. If the re-
spective unilateral decentralization of either of them leads to the full-scale pollution of its
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member countries, then the decentralization of the larger one exerts a strictly greater nega-
tive externality on the other countries’ utilities as well as on the aggregate contribution of
the public good.

Lemma 3 ensures that the member countries of a coalition provide no public good after
its decentralization as long as their weights are all inferior to ε. Under this assumption, the
decentralization of the larger coalition always exerts a strictly greater negative externality.

3.3 Nash equilibria of the decentralization game

We now return to the decentralization game D(N ) where coalitions simultaneously choose
whether or not to decentralize decision-making.

3.3.1 General case

The decentralization game D(N ) is finite (i.e. with a finite number of players each pos-
sessing a finite number of choices). Hence the game admits mixed-strategy equilibria.

Lemma 6. In a decentralization game:

(i) If a centralized coalition i initially produces no public good, then it has no strictly
positive gain from decentralization, whatever the choices of the other coalitions.

(ii) If a centralized coalition i initially contributes to the provision of public good, but
none of the other players makes any contribution both before and after the unilateral
decentralization of coalition i, then coalition i strictly prefers not to decentralize,
whatever the choices of the other coalitions.

The condition that none of the other players provides any public good after the unilateral
decentralization of i in (ii) cannot be dropped. Indeed, a player who does not provide public
good in one situation can well do so when other players’ behavior change. Example 3 in
Section 5 presents a case where a coalition does not contribute to the public good in the
presence of another centralized coalition, but contributes when the latter decentralizes.
The intuition behind Lemma 6 is that, for decentralization to be profitable for a coalition,

it should be neither too big nor too small compared with the other players. On the one
hand, if it is too big, its decentralization does not induce a large increase in the provision
of public good made by its opponents. Hence, the harm done by the free riding of its own
members on each other outweighs the benefit from their free riding on the others. On the
other hand, if it is too small, then it completely free rides even as a centralized coalition;
hence it is indifferent between centralization and decentralization.
The following is an immediate corollary of Lemma 6(ii).

Corollary 1. In a decentralization game, suppose that coalition i initially contributes to
the provision of public good. Also suppose that all the autonomous countries and the mem-
ber countries of all the other coalitions have a weight inferior to ε. Then, there is no
equilibrium at which coalition i chooses decentralization while all the other coalitions also
choose decentralization.
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3.3.2 Two-coalition case or a bipolar world

A characterization of all the Nash equilibria of a decentralization game is hardly tractable
for an arbitrary number of players. Therefore, we focus the rest of our analysis on a
particular class of decentralization games, in which there are only two coalitions and no
initially autonomous countries, and all the member countries of the two coalitions have
weights lower than ε. A thorough analysis of the Nash equilibria of games in this class is
possible.
The matrices in Table 1 represent this 2 × 2 decentralization game. The row player

is coalition 1 while the column player is coalition 2. Recall that choice C stands for
“centralization” and D for “decentralization”. The quantities of emissions from the two
coalitions at the equilibrium of the induced emission game are listed in the matrix on the
left hand side of Table 1 while their corresponding per-unit utilities are listed in the matrix
on the right hand side.
Whenever a coalition i decentralizes, the aggregate emission quantity from its member

countries is mi. Indeed, since all the member countries of both coalitions have weight lower
than ε, according to Lemma 3, they emit as much pollution as their capacities permit when
acting autonomously.
We only consider the nontrivial case where at least one coalition, say coalition 1, initially

provides some public good (q1 < m1). Besides, we also concentrate on the nontrivial case
where coalition 2 is not too small with respect to coalition 1 so that it produces some public
good when coalition 1 decentralizes unilaterally (q(1)

2 < m2). Indeed, if it is not the case,
then according to Lemma 4, it also provides no public good when coalition 1 is centralized.
In other words, coalition 2 is so small that it never contributes any public good, in which
case Lemma 6(ii) implies that coalition 1 strictly prefers centralization while coalition 2 is
indifferent between centralization and decentralization. Finally, we consider only (locally)
stable equilibria.8

Table 1: A 2× 2 delegation game.

(a) Emissions
C D

C q1, q2 q
(2)
1 ,m2

D m1, q
(1)
2 m1,m2

(b) Per-unit utilities
C D

C u1, u2 v
(2)
1 , v

(2)
2

D v
(1)
1 , v

(1)
2 v

(1,2)
1 , v

(1,2)
2

Proposition 1. The set of stable Nash equilibria of the decentralization game, denoted by
NE, depends only on whether the coalitions gain from their respective unilateral decentral-
ization. More precisely,

(i) if unilateral decentralization is weakly deleterious for both coalitions (u1 ≥ v
(1)
1 , u2 ≥

v
(2)
2 ), then at the unique equilibrium both coalitions centralize (NE = {(C,C)});

8By “locally stable” we mean that a sequence of alternative best replies triggered by any small perturbation
to a player’s equilibrium strategy brings the game back to the equilibrium.
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(ii) if unilateral decentralization is weakly deleterious for coalition 1 but strictly profitable
for coalition 2 (u1 ≥ v

(1)
1 , u2 < v

(2)
2 ), then at the unique equilibrium coalition 1

centralizes while coalition 2 decentralizes (NE = {(C,D)});

(iii) if unilateral decentralization is strictly profitable for coalition 1 but weakly deleterious
for coalition 2 (u1 < v

(1)
1 , u2 ≥ v

(2)
2 ), then at the unique equilibrium coalition 1

decentralizes while coalition 2 centralizes (NE = {(D,C)});

(iv) if unilateral decentralization is strictly profitable for both coalitions (i.e. u1 < v
(1)
1

and u2 < v
(2)
2 ), then there are two equilibria: one coalition centralizes while the other

decentralizes (NE = {(C,D), (D,C)}.

As from Lemma 6 and Corollary 1, at least one coalition remains centralized at a pure
equilibrium. While it is fairly plain that a higher sensitivity to pollution results in a
stronger incentive to remain centralized, the role of the weight of a country is much less
straightforward. We deduce from Lemma 6 that very small and very large coalitions are
less likely to decentralize. We also know that a large centralized coalition is always worse
off than a smaller one in the emission game (Lemma 2). This does not mean however that
a large coalition always has more incentive to decentralize than a smaller one, because the
negative consequence of her decentralization on the aggregate provision of public good is
also more severe (Lemma 5).

4 First stage: Activation of the coalition
This section turns to the first stage of the game, where the member countries of a potential
coalition make a collective decision on whether or not to activate the coalition.

4.1 Setting of the game

There are a finite number of players who are divided into G disjoint groups. Let the set of
G groups be denoted by G = G1 ∪ G2 ∪ G3. Each group in G1 is an autonomous country.
Each group in G2 is an active coalition containing a finite number of member countries.
Each group in G3 is a finite number of autonomous countries that are susceptible to form
a coalition.
In the first stage, only the groups in G3, i.e. the potential coalitions, have a choice.

The autonomous countries in the group make the choice jointly. They choose whether
to activate their coalition (A) or not to activate it (NA). Denote the profile of choices by
a = (ag)g∈G3 , where ag ∈ {A,NA} for all g ∈ G3. It induces a decentralization game D(N a)
which is played at the second stage. The players in the induced decentralization game, N a,
are composed of autonomous countries and coalitions. Among the former, there are initial
autonomous countries in G1 and the member countries of all the potential coalitions in G3

having chosen not to activate the coalition. Among the latter, there are initial coalitions in
G2 and the potential coalitions in G3 having chosen to activate the coalition. If a potential
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coalition’s members choose not to activate coalition, then in the induced decentralization
subgame D(N a), each of them plays as an autonomous country and receives its equilibrium
utility in D(N a); on the other hand, if they choose to activate the coalition, then the whole
group acts as an activated coalition in the induced decentralization game D(N a), and it
receives the per-unit utility at the equilibrium of D(N a).

A problem arises when it comes to decide the players’ utilities associated to a choice
profile. As Proposition 1 shows, there may be multiple equilibria in the induced decentral-
ization subgameD(N a). While it is possible to define a selection or rationalization criterion
of the equilibria, or to keep on working with all the equilibria, we choose the simplest case
immune to controversy. Firstly, we assume that there is only one potential coalition g in
G3, the unique group having a choice in the first stage. Thus, only g’s anticipation of what
will happen thereafter counts. Secondly, when member countries of g compare their equi-
librium utilities in the two decentralization subgames induced by the two choices (A and
NA), they may be comparing two sets which are not necessarily singletons because of the
multiple equilibria in theses subgames. To define a criterion for the comparison between
two sets of values is not evident because it depends on the anticipation of g’s members on
what will happen in each of the subgames as well as on other elements in the game. A
universal rule is not at hand. This difficulty can be bypassed if we further suppose that
there is only one other player in the game, who is an active coalition, as shown in next
subsection.

4.2 A potential coalition versus a coalition

Let us look at the particular case where there are an active coalition (called coalition 1)
and a group of autonomous countries susceptible to form a coalition (called group 2). All
member countries’ weights are assumed to be lower than ε. In this setting, the three-stage
game can be well defined and a full analysis of its equilibria is possible.
In the first stage, members of group 2 have a choice to make: A or NA.
Not activating the coalition (NA) induces a decentralization game where they act as

autonomous countries, so that they have no choice in the induced decentralization game in
the second stage. The matrix on the left hand side of Table 2 presents this decentralization
subgame. There, the common per-unit utility to the members of group 2 depends on
coalition 1’s choice of (de)centralization. According to the proof of Proposition 1, v(2)

1 >

v
(1,2)
1 . Hence the unique and pure equilibrium of the subgame is C, so that the per-unit
utility to the member countries of group 2 is v(2)

2 .
Activating the coalition (A) induces a decentralization game in the second stage where

group 2 acts as an active coalition. This is the setting in Section 3.3.2. The decentralization
subgame is presented in the matrix on the right hand side of Table 2. Its equilibria are fully
characterized in Proposition 1. There are three candidates for stable Nash equilibrium in
this game, (C,C), (D,C) and (C,D). Let the set of coalition 2’s per-unit utility at all the
stable equilibria in this decentralization game be denoted by E2. Then E2 has at least one
and at most two elements.
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The member countries of group 2 compare their per-unit utilities in the two decentral-
ization games. More precisely, they compare v(2)

2 with the elements in E2. We show that
the comparison is feasible because there are only three possibilities: (i) v(2)

2 ≥ e for all
e ∈ E2, and there is ê ∈ E2 such that v(2)

2 > ê, (ii) v(2)
2 ≤ e for all e ∈ E2, and there is ê ∈ E2

such that v(2)
2 < ê, and (iii) v(2)

2 = e for all e ∈ E2.

Table 2: First stage.

(a) Coalition 2 is not active

C v
(2)
1 ∗, v

(2)
2 ∗

D v
(1,2)
1 , v

(1,2)
2

(b) Coalition 2 is active
C D

C u1, u2 v
(2)
1 , v

(2)
2

D v
(1)
1 , v

(1)
2 v

(1,2)
1 , v

(1,2)
2

Proposition 2. In the nontrivial case discussed in Section 3.3.2, group 2’s choice in the
first stage of the game is as follows.

(i) If u1 ≥ v
(1)
1 and u2 ≥ v

(2)
2 (the two equalities do not hold simultaneously), group 2

chooses A.

(ii) If u1 ≥ v
(1)
1 and u2 < v

(2)
2 , group 2 is indifferent between A and NA.

(iii) If u1 < v
(1)
1 , group 2

(a) chooses A if v(1)
2 > v

(2)
2 ;

(b) chooses NA if v(1)
2 < v

(2)
2 ;

(c) is indifferent between A and NA if v(1)
2 = v

(2)
2 .

Recall that u1 ≥ v
(1)
1 means coalition 1 does (weakly) better by centralizing than by

decentralizing, facing a centralized coalition 2; u2 < v
(2)
2 means that group 2 does strictly

better in a decentralized way than in a centralized way, facing a centralized coalition 1;
and v(1)

2 > v
(2)
2 means that the per-unit utility of coalition 2 as a decentralized group facing

a centralized coalition 1 is strictly higher than its per-unit utility as a centralized coalition
facing a decentralized coalition 1.
Considering Proposition 2 together with the previous results allows us to characterize the

motives of group 2 for choosing to activate its coalition in the first stage. A first possibility
is that group 2 cares about the public good and expects the active coalition 1 to also
care enough to stay centralized after the activation of coalition 2. This case corresponds
to Proposition 2(i) and is illustrated in Example 2 in the next section. It is the most
optimistic case since it leads to two centralized coalitions in the third stage. A second
possibility is that group 2 does not care that much about the public good, so that it can
expect to decentralize decision-making in the second stage and free ride in the third stage.
In that case group 2 is indifferent, as the activation of the coalition has no impact on the
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decision-making. This case corresponds to Proposition 2(ii). The third possibility is that,
even if coalition 1 chooses to decentralize as a consequence of the activation of coalition
2, the members of group 2 are still better off by jointly contributing than by jointly free
riding in the third stage. This case corresponds to Proposition 2 (iii.a).

The reason for the members of group 2 to choose not to activate their coalition in the
first stage is to commit to decentralization in the second stage. This corresponds to Propo-
sition 2(iii.b). There are two scenarios where this can happen. In the first one, the presence
of two coalitions leads to multiple equilibria in the decentralization subgame, and only the
equilibrium where coalition 1 centralizes and coalition 2 decentralizes is advantageous for
group 2. It is the case in Example 1 in the next section, where group 2 chooses not to
activate the coalition in the first stage so as to ensure that at the unique equilibrium in the
second stage, coalition 1 centralizes. This intuition is reminiscent of the first mover advan-
tage in a Stackelberg game. In the second scenario, centralization is a weakly or strictly
dominant strategy for an active coalition 2 in the second stage, and at the equilibrium
coalition 1 decentralizes; however, it is a disadvantageous outcome for group 2. Therefore,
it chooses not to activate the coalition in the first stage in order to “force” coalition 1 to
centralize in the second stage. This case is illustrated in Example 3 in the next session.
Such a scenario can even take place if group 2 is smaller. It gets further exacerbated if the
preference for the public good is stronger for the members of this smaller group. This last
case is illustrated in Example 4 in the next session.

5 Examples
This section provides four numerical examples to illustrate the results of the previous
sections. In each example, there are two groups of countries. The first group is an active
coalition of weight m1, called coalition 1. The second group is a potential coalition of total
weight m2 ≤ m1, called group 2. When the member countries of group 2 activate their
coalition, the group is also called coalition 2. In the first stage, the member countries of
group 2 choose whether to activate their coalition. In the second stage, the active coalitions
decide whether to centralize or decentralize decision-making of emissions. The third and
last stage is the emission game induced by the decisions made in the second stage. We
focus on subgame perfect Nash equilibria (SPNE). The four examples respectively show
that:

(i) whether an active coalition has an incentive for strategic decentralization depends on
the nature of its opponent(s);

(ii) two coalitions may both choose centralizing in equilibrium;

(iii) a unipolar world may provide more public good than a multipolar world; and

(iv) a group of countries, whose dominant strategy when acting as a coalition is to cen-
tralize decision-making, may find it better not to activate their coalition in the first
place.
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In each example, we first study the decentralization subgame beginning at the second
stage. There are thus two possible scenarios: either group 2 has chosen not to activate
the coalition (NA) or to activate it (A) in the first stage. In the first scenario, the world
is composed of one coalition and a group of small autonomous countries, and is called a
unipolar world. In the second one, the world is composed of two coalitions, and is called
a multipolar world. After obtaining the SPNE in these two decentralization subgames, we
return to the first stage to find the SPNE for the full game. The notations are the same
as in the previous sections. We provide the detailed computation in Appendix 3.

5.1 Example 1: Strategic decentralization according to the nature
of opponents

Assume m1 = m2 = 1, and the per-unit utility function of players in the induced emission
game is

(6) ui(q) = 3q
1
2
i −Q

3
2 .

Second stage, scenario 1 (unipolar world): Group 2 has chosen not to activate the
coalition. Thus, in the second stage, only coalition 1 has a choice between centralization (C)
and decentralization (D). We first solve the two emission games in the last stage induced
respectively by the two choices of coalition 1. Since individual countries are sufficiently
small, q2 = m2 = 1 in both emission games. If coalition 1 chooses C, the value of q1 at
the equilibrium of the induced emission game is q1 =

√
5−1
2

= 0.62, and its per-unit utility
is u1 = 0.30. If coalition 1 chooses D, then none of its member countries contribute any
public good in the induced emission game, thus q(1)

1 = 1, and their common per-unit utility
is v(1)

1 = 0.17, lower than 0.30.
The matrix on the left hand side of Table 3 describes the decentralization game. Coalition

1 is the row player. Group 2 is the column player but it has no choice (because it is inactive).
As Lemma 6 shows, coalition 1 never benefits from decentralizing and free riding on the
small countries that are already committed to produce no public good at all. Hence, at the
unique equilibrium of the subgame, coalition 1 chooses C, and this is true for all the four
examples in this section. Therefore, the analysis of scenario 1 is omitted in the remaining
examples.

Second stage, scenario 2 (multipolar world): Group 2 has chosen to activate the
coalition. In the second stage, two identical coalitions, 1 and 2, choose between centraliza-
tion (C) and decentralization (D).
Four possible emission games can be induced by the choices of the two coalitions. First,

if they both choose C, then at the equilibrium of the induced emission game, both of
them discharge pollution of quantity q1 = q2 =

√
2

2
= 0.71, and their per-unit utilities are

u1 = u2 = 0.84. If one of the coalitions chooses D, say coalition 1, while the other one
chooses C, the induced emission game is similar to the one in the first case of scenario 1
(just by swapping the roles of the two coalitions). Hence the quantity of pollution from
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coalition 1 is q(1)
1 = m1 = 1 while that from coalition 2 is q(1)

2 = 0.62 at the equilibrium. The
per-unit utility to coalition 1 is v(1)

1 = 0.94 > u1 = 0.84. The benefits gained by coalition 1
by free riding on a centralized coalition 2 outweigh the loss from cooperation between its
own member countries. This result is in contrast with scenario 1, where coalition 1 has
no benefits from free riding on a group 2 of small autonomous countries. The two other
emission games are similar to those in scenario 1.
The matrix on the right hand side of Table 3 describes the decentralization game. Coali-

tion 1 is the row player and coalition 2 the column player. There are two stable Nash
equilibria which are pure: (C,D) and (D,C), highlighted by stars. Indeed, a coalition
has an incentive to decentralize if the other one is centralized, but not if the other one is
decentralized.
This scenario could apply to the examples of the EU and the US in the introduction,

where two active coalitions, the EU and the US, are present, but decision-making over each
global public good (climate change and world security) is centralized in one coalition and
decentralized in the other.

Table 3: Strategic decentralization depends on the nature of the other player.

(a) Coalition 2 is not active.

C 0.30∗, 0.94∗
D 0.17, 0.17

(b) Coalition 2 is active.
C D

C 0.84, 0.84 0.30∗, 0.94∗
D 0.94∗, 0.30∗ 0.17, 0.17

First stage: The previous scenarios are induced by the choice of group 2 in the first
stage. If it chooses to activate (resp. not to activate) the coalition, then the induced
decentralization subgame is scenario 2 (resp. scenario 1). Comparing the equilibria in
the two scenarios, we see that, unless group 2 is certain that the equilibrium attained
in Scenario 2 is (C,D) (for this to be true, they must let coalition 1 be convinced that
an active coalition 2 will choose decentralization), they strictly prefer not to activate the
coalition. Instead of trying to convince coalition 1 that an active coalition 2 decentralizes,
group 2 can simply choose not to activate the coalition in the first place. This choice of
group 2 forces coalition 1 to commit itself to centralization in the second stage, which
allows the member countries in group 2 to free ride.

5.2 Example 2: Two centralized coalitions in equilibrium

Assume m1 = m2 = 1, and the per-unit utility function of each player in the emission
game in the last stage is

(7) ui(q) = q
1
2
i −Q

3
2 .

Compared with the utility function (6) in Example 1, all the countries care more about
the public good.
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Second stage, scenario 2 (multipolar world): Group 2 has chosen to activate the
coalition so that there are two identical coalitions who choose between C and D in the
second stage. If both coalitions choose C, the equilibrium of the induced emission game is
attained at q1 = q2 =

√
1/18 ≈ 0.24, with per-unit utilities u1 = u2 = 0.16. If coalition

1 chooses D, the equilibrium of the induced emission game becomes q(1)
1 = 1, q

(1)
2 = 0.1.

Coalition 2, the centralized one, decreases its emissions to compensate the free riding of
coalition 1, the decentralized one. But the compensation is not very effective, since its
emissions were already low. In consequence, the utility of the decentralized coalition is
v

(1)
1 = −0.16 < u1 = 0.16. Therefore, when one coalition stays centralized, the other has
no incentive for decentralization, which is different from the situation in Example 1. The
unique equilibrium of this decentralization subgame represented by the matrix on the right
hand side of Table 4 is (C,C).

Table 4: Two coalitions stay united at the equilibrium.

(a) Coalition 2 is not active.

C −0.84∗, −0.16∗
D −1.83, −1.83

(b) Coalition 2 is active.
C D

C 0.16∗, 0.16∗ −0.84, −0.16
D −0.16, −0.84 −1.83, −1.83

First stage: The previous scenarios are induced by the choice of group 2 in the first
stage. Comparing the per-unit utility in equilibrium to the member countries of group 2 in
the two scenarios, we can derive that group 2 chooses to activate the coalition in the first
stage. Therefore, in the only SPNE of this three-stage game, both coalitions are active and
centralized, and they provide a high level of public good. Besides, the multipolar world
is strictly more efficient in providing public goods than the unipolar one. The reason for
this result is that the countries care so much about the public good that the gain from free
riding on the other coalition is offset by the loss of cooperation within a coalition.

5.3 Example 3: A unipolar world providing more public good
than a multipolar world

In this example, the two groups have different weights: m1 = 1.18,m2 = 0.82. All players in
the induced emission game have the same utility functions as defined by (6). In particular,
the per-unit utility functions for the two groups when they are centralized coalitions are
respectively

u1(q) = 3
( q1

1.18

) 1
2 −Q

3
2 ,(8)

u2(q) = 3
( q2

0.82

) 1
2 −Q

3
2 .(9)
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Second stage, scenario 2 (multipolar world): Group 2 has chosen to activate the
coalition in the first stage. First, consider the case where coalition 1 chooses C. If coalition
2 makes the same choice, the equilibrium of the induced emission game is a corner solution:
q2 = m2 = 0.82. This is due to the fact that coalition 2 is much smaller than coalition
1 so that it free rides on the latter even when it behaves as a centralized coalition. The
emissions from both groups are thus the same as in the case where coalition 2 chooses
D (with q1 = 0.60, u1 = 0.45). Given coalition 1’s choice of C, coalition 2 is indifferent
between C and D.
Next, consider the case that coalition 2 chooses C. The subcase that coalition 1 also

chooses C has been discussed. If coalition 1 chooses D, the equilibrium of the induced
emission game is attained at q(1)

1 = m1 = 1.18 and q(1)
2 = 0.66. The latter is strictly lower

than m2, because coalition 2 prefers to provide a strictly positive amount of public good if
no one else is willing to do so. The per-unit utility of coalition 1 is v(1)

1 = 0.50 > u1 = 0.45.
Coalition 1 has thus a strictly positive gain from decentralization by free riding on the
centralized opponent.
The matrix on the right hand side of Table 5 describes the decentralization subgame.

There are two equilibria which are pure, (D,C) and (C,D). However, the second one
(distinguished by double stars) is not stable. This contrast results from the different
weights of the two groups.

Table 5: A unipolar world provides more public good than a multipolar world.

(a) Coalition 2 is not active.

C 0.45∗, 1.31∗
D 0.17, 0.17

(b) Coalition 2 is active.
C D

C 0.45, 1.31 0.45 ∗ ∗, 1.31 ∗ ∗
D 0.50∗, 0.20∗ 0.17, 0.17

First stage: Comparing the per-unit utility of the member countries of group 2 at the
equilibria in the two scenarios, we derive that they choose not to activate the coalition in
the first stage. By doing so, they ensure a per-unit utility of 1.31, while if they activate
the coalition, they obtain only 0.20 at the stable equilibrium. This is a good news for
those caring about the aggregate provision of public good. Indeed, if group 2 activates
the coalition, and coalition 1 decentralizes while a centralized coalition 2 has to provide
all of the public good, it will provide less than what coalition 1 does in the case that
group 2 free rides on a centralized coalition 1. The aggregate pollution in the first case is
Q(1) = m1 + q

(1)
2 = 1.18 + 0.66 = 1.84, while that in the second case is Q = q1 + m2 =

0.60 + 0.82 = 1.42.
Therefore, in this example (and in contrast to the previous example), a multipolar world

provides less public good than a unipolar world.
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5.4 Example 4: A group of countries whose dominant strategy as
a coalition is centralization preferring not to activate the
coalition

Consider two groups of countries with different weights and different preference for the
public good. Group 1 has total weight m1 = 1.1. Group 2 is smaller with total weight
m2 = 0.9. However, group 2 is much more affected by pollution than group 1: s1 = 1,
s2 = 5

2
. In the context of climate change, group 2 can be composed of coastal countries,

or can reflect the fact that developed countries are more affected by the impact of climate
change. The per-unit utility functions for the two groups when they are active centralized
coalitions in an emission game are thus respectively

u1(q) = 3
( q1

1.1

) 1
2 −Q

3
2 ,(10)

u2(q) = 3
( q2

0.9

) 1
2 − 5

2
Q

3
2 .(11)

Second stage, scenario 2 (multipolar world): Group 2 has chosen to activate the
coalition in the first stage. Consider the emission game induced by (C,C), the centraliza-
tion of both coalitions. At the equilibrium, q1 = 0.87, q2 = 0.17, and the per-unit utilities
are u1 = 1.60 and u2 = −1.36. Thus, even if coalition 1 is larger, coalition 2 makes a higher
contribution because of its strong preference for the public good. Now suppose that coali-
tion 1 chooses D while coalition 2 chooses C. At the equilibrium of the induced emission
game, a decentralized coalition 1 emits q(1)

1 = m1 = 1.1 of pollution while a centralized
coalition 2 emits q(1)

2 = 0.14, which is lower than the level of its emissions 0.17 in the case
where both coalitions are centralized. The utility of coalition 1 is v(1)

1 = 1.61 > u1 = 1.60.
Therefore, given the centralization of coalition 2, which is smaller but more sensitive to
pollution, coalition 1, which is larger but less sensitive to pollution, prefers decentralizing.
We turn to the case where coalition 2 chooses D while coalition 1 chooses C. At the

equilibrium of the induced emission game, compared with the case of (C,C), the pollution
of coalition 2 is increased to q

(2)
2 = m2 = 0.90, while that of coalition 1 is reduced to

q
(2)
1 = 0.60. However, the unilateral decentralization is not advantageous for coalition 2:
v

(2)
2 = −1.61 < u2 = −1.36. Indeed, according to matrix (b) in Table 6, C is a dominant
strategy of coalition 2 in this multipolar subgame. The unique pure equilibrium is (D,C), so
that the larger but less sensitive to pollution coalition 1 chooses strategic decentralization,
while the smaller but more sensitive to pollution coalition 2 stays centralized and provides
all of the public good.

First stage: By comparing the per-unit utility of the member countries of group 2 in the
two scenarios, we derive that group 2 chooses not to activate the coalition in the first place.
Indeed, otherwise they would be committed to centralization in the second stage, which
allows coalition 1 to decentralize and free ride. Note that choice pair (C,D), though leading
to the same utilities as in a unipolar world, is not an equilibrium of the decentralization
game in a multipolar world. For coalition 2, strategy D is strictly dominated by C in
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Table 6: Centralization as a dominant strategy.

(a) Coalition 2 is not active.

C 0.38∗, −1.61∗
D 0.17, −4.07

(b) Coalition 2 is active.
C D

C 1.60, −1.36 0.38, −1.61
D 1.61∗, −2.27∗ 0.17, −4.07

scenario 2. On the contrary, by not activating the coalition in the first place, the member
countries of group 2 “commit” themselves to playing D so as to “force” coalition 1 to play
C, i.e. contributing to the public good. It is a typical example of situations where more
choices induce a worse outcome.
Finally, note that the outcome of the decentralization game of two active coalitions

(D,C) provides more public good (Q(1) = 1.24) than the outcome when coalition 2 is not
activated (Q(2) = 1.5).

6 Comparative statics

6.1 Comparative statics in the emission game

This subsection discusses the impact of the variation of a player’s weight or sensitivity to
pollution on the equilibrium of an emission game.
The following proposition signifies that if the sensitivity to pollution of a player is in-

creased, then its contribution to the public good will be increased while that of any other
players will be reduced, and the aggregate level of the provision of the public good will be
increased. Besides, the utility of that player will be decreased while that of the others will
be increased.

Proposition 3. In emission game Γ(N ), suppose that the sensitivity of player i to pollution
is increased and becomes s̃i ( s̃i > si). Let q̃ = (q̃j)j∈N denote the new equilibrium and Q̃
the aggregate level of emission at the new equilibrium. Then

(i) Q̃ ≤ Q, q̃i ≤ qi, and each of the equalities holds if and only if q̃i = qi = mi.

(ii) For each j ∈ N \ {i}, q̃j ≥ qj, and equality holds if and only if either q̃i = qi = mi or
q̃j = qj = mj.

(iii) If q̃i = qi = mi, then uj(q̃) = uj(q) for all j ∈ N . Otherwise, ui(q̃) < ui(q), and
uj(q̃) > uj(q) for all j 6= i.

For the impact of the variation of the sensitivity si, we need the following assumption
on function g. One can easily check the g’s used in the numerical examples in Section 5
satisfy this assumption.

Assumption 2. For all q > 0, function x 7→ g′( q
x

)

x
is strictly decreasing for all x ≥ q.
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The following proposition implies that, when a player i’s weight is increased, there are
two possibilities for its impact on the equilibrium. Roughly speaking, in the case that
player i has not been polluting with full capacity, his emission level and utility will both
be decreased, and so will the aggregate emission level; while for the other players, their
emission levels and utilities will be increased. In the case that player i has been polluting
with full capacity, then his emission level and the aggregate emission level will first be
increased then be decreased, but his utility will always be decreased; while for the other
players, their emission levels and utilities will all first be decreased then be increased.

Proposition 4. In emission game Γ(N ), suppose that the weight of player i is increased
and becomes m̃i ( m̃i > mi). Let q̃ = (q̃j)j∈N denote the new equilibrium and Q̃ the
aggregate level of emission at the new equilibrium. Then,
1. q̃i

m̃i
≤ qi

mi
.

2. If
g′(

qi
mi

)

mi
= sif(Q), then, under Assumption 2,

(i) Q̃ < Q, q̃i < qi, and for all j 6= i, q̃j ≥ qj where equality holds if and only if qj = mj.

(ii) ui(q̃) < ui(q) and for all j 6= i, uj(q̃) > uj(q).

3. If
g′(

qi
mi

)

mi
> sif(Q) (so that qi = mi), then

(1) for all m̃i that is close enough to mi for
g′(

qi
m̃i

)

m̃i
> sif(Q), one has

(i) Q̃ > Q, q̃i > qi, and for all j 6= i, q̃j ≤ qj where equality holds if and only if q̃j = mj.

(ii) ui(q̃) < ui(q) and for all j 6= i, uj(q̃) < uj(q)

(2) for all m̃i such that
g′(

qi
m̃i

)

m̃i
≤ sif(Q), under Assumption 2, one has

(i) Q̃ ≤ Q and q̃i ≤ qi, where each of the equalities holds if and only if
g′(

qi
m̃i

)

m̃i
= sif(Q);

for all j 6= i, q̃j ≥ qj where equality holds if
g′(

qi
m̃i

)

m̃i
= sif(Q) or qj = mj.

(ii) ui(q̃) < ui(q); for all j 6= i, uj(q̃) ≥ uj(q) where equality holds if and only if
g′(

qi
m̃i

)

m̃i
= sif(Q).

6.2 Comparative statics for the first two stages in the bipolar case

In this subsection, we first study the impact of the variation of a coalition’s weight or sen-
sitivity to pollution on the equilibrium of a two-coalition decentralization game. Then we
further discuss how the increase of a potential coalition’s weight or sensitivity to pollution
affects its choice between activating and not activating the coalition, in the setting of a
coalition versus a potential coalition analysed in Section 4.2.
First let us focus on the setting of Section 3.3.2 where there are two coalitions playing

a decentralization game. Fix the characteristics of coalition 1, i.e. its weight m1 and
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sensibility s1, and one of the two characteristics of coalition 2. Let the other characteristic
of coalition 2 increase, so that we can study the change of the equilibria of the game
presented in Table 1(b). Let the lower bound of the weight of coalition 2 be s2 and
that of its weight be m2. When coalition 2 has weight m2 and sensitivity s2, denote
the equilibrium of the emission game played by two centralized coalitions 1 and 2 by q.
Assume that q

1
< m1 and q

2
< m2, i.e. both coalitions contribute to the public good in

this case. Besides, for the sake of simplicity of the analysis, we assume that the weights
of individual countries are negligible (mathematically, of measure zero) so that they will
always decentralize whenever they determine the emission level independently.

In the following proposition, we fix m2 and let s2 be increased. One can take the equi-
librium of the emission game corresponding to each entry of Table 1(b) and the resulting
aggregate pollution as well as the utilities as functions of s2. The first part of the proposi-
tion states that when s2 is large enough, strategy “decentralization" D is strictly dominated
by strategy “centralization" C for coalition 2 and, in particular, (C,C) is a better outcome
than (C,D) for it. The second part of the proposition states that, for most of the values of
(m1, s1), when s2 is large enough, strategy “decentralization" D is either strictly or weakly
dominated by strategy “centralization" C for coalition 1 and, in particular, (C,C) is the
unique (locally) stable equilibrium of the game; in the case that (D,C) can also be an
equilibrium, it is better for coalition 2 than (C,D).

Proposition 5. In a two-coalition decentralization game, let m1, s1 and m2 be fixed.
1.For s2 large enough, u2(s2) > v

(2)
2 (s2) and hence strategy D is strictly dominated by

strategy C for coalition 2. In particular, (C,D) is worse than (C,C) for coalition 2, and
it is not an equilibrium of the game.
2. (1) If g′(1) < s1f

′(m1), then u1(s2) > v
(1)
1 (s2) for s2 large enough and hence strategy

D is strictly dominated by strategy C for coalition 1. In particular, (C,C) is the unique
equilibrium of the game.
(2) If g′(1) > s1f

′(m1), then u1(s2) = v
(1)
1 (s2) for s2 large enough and hence strategy

D is weakly dominated by strategy C for coalition 1. In particular, (C,C) is the unique
(locally) stable equilibrium of the game.
(3) If g′(1) = s1f

′(m1), then v
(2)
2 (s2) < v

(1)
2 (s2) for all s2 large enough, i.e. (C,D) is

worse than (D,C) for coalition 2. The equilibrium in this case can be (C,C) or (C,D).

Assumption 3. For all q > 0, function x 7→ g′( q
x

)

x
is strictly decreasing for all x ≥ q and

g′( q
x

)

x
tends to 0 when x tends to +∞.

In the following proposition, we fix s2 and let m2 be increased. One can take the
equilibrium of the emission game corresponding to each entry of Table 1(b) and the re-
sulting aggregate pollution as well as the utilities as functions of m2. The first part of the
proposition states that when m2 is large enough, strategy “decentralization" D is strictly
dominated by strategy “centralization" C for coalition 2 and, in addition, (C,D) is worse
than both (C,C) and (D,C). The second part of the proposition states similar results
as Proposition 5: roughly speaking, in most of the cases strategy D is strictly or weakly
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dominated by strategy C for coalition 1 and the only (locally) stable equilibrium of the
game is (C,C).

Proposition 6. In a two-coalition decentralization game, let m1, s1 and s2 be fixed.
1. Under Assumption 2, there exists a m̄2 ≥ m2 such that, for all m2 > s̄2, u2(m2) >

v
(2)
2 (m2) and v

(1)
2 (m2) > v

(2)
2 (m2). In particular, (C,C) and (D,C) are both better for

coalition 2 than (C,D), and (C,D) is not an equilibrium of the game.
2. Under Assumption 3,
(1) If g′(1) < s1f

′(m1), then u1(s2) > v
(1)
1 (s2) for s2 large enough and hence strategy

D is strictly dominated by strategy C for coalition 1. In particular, (C,C) is the unique
equilibrium of the game.
(2) If g′(1) > s1f

′(m1), then u1(s2) = v
(1)
1 (s2) for s2 large enough and hence strategy

D is weakly dominated by strategy C for coalition 1. In particular, (C,C) is the unique
(locally) stable equilibrium of the game.

Finally consider the three-stage games with one active coalition 1 and a group 2 composed
of countries which can potentially form a coalition.

Corollary 2. In the setting of Proposition 5, for s2 large enough, group 2 chooses to
activate the coalition in the first stage of the game at the equilibrium.

Corollary 3. In the setting of Proposition 6, under Assumption 2, for m2 large enough,
group 2 chooses to activate the coalition in the first stage of the game at the equilibrium.

The results of this section may serve to explain the change in the attitude of BRICS
countries towards environmental cooperation. On April 22, 2015, the Environment Minis-
ters of the five countries gathered in Moscow for their first official meeting to discuss green
economy development and cooperation in tackling climate change.9 Either their economic
growth or their increasing concern for a sustainable development could have acted as a
trigger for this summit.

Finally, we present two groups of simulations to illustrate the evolution of equilib-
rium behaviour respectively in stage 2 and stage 3, in the bipolar case, as described in
Propositions 5–6 and Corollaries 2–3. In both groups, the utility functions are defined by
ui(q) = 3q

1
2
i −Q

3
2 .

The first group corresponds to case that g′(1) > s1f
′(m1). The first simulation focuses

on the evolution of the equilibria of a two-coalition decentralization game, i.e. the game
from stage 2, when the weight and sensitivity of one of the coalitions vary while those of
the other one are fixed. Fix the weight of an active coalition 1 to be m1 = 0.9, and its
sensitivity to be s1 = 1. Let the weight of an active coalition 2, m2, vary from 0.5 to 3,
and its sensitivity, s2, vary from 0.9 to 2.9.
In Figure 1, the areas in deep blue correspond to the range of (m2, s2) where the unique

equilibrium is (C,C); the area in orange corresponds to the range of (m2, s2) where the
9http://www.brics.utoronto.ca/docs/150422-environment.html
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Figure 1: Eq. in stage 2 Figure 2: Eq. in stage 1

unique equilibrium is (C,D); the areas in yellow corresponds to the range of (m2, s2) where
the unique equilibrium is (D,C); and the area in purple corresponds to the range of (m2, s2)
where there are mulitple equilibria: (C,D) and (D,C). This figure is consistent with the
results in Propositions 5 and 6 which state that when m2 or s2 is large enough, (C,C) is
the unique equilibrium.
The second simulation focuses on the evolution of the choice of a potential coalition,

group 2, in stage 1, facing coalition 1. The values of m1 and s1 and the ranges of m2 and
s2 are the same as in the previous simulation.
In Figure 2, the areas in green correspond to the range of (m2, s2) where group 1 chooses

to activate the coalition; the area in red correspond to the range of (m2, s2) where group
1 chooses not to activate the coalition; and the area in pale blue corresponds to the area
where group 1 is indifferent between activating or not the coalition. This figure is consistent
with the results in Corollaries 2 and 3, which state that when m2 or s2 is large enough,
group 2 will activate the coalition.

Figure 3: Eq. in stage 2 Figure 4: Eq. in stage 1
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The second group corresponds to case that g′(1) < s1f
′(m1). Fix the weight of an active

coalition 1 to bem1 = 1.1, and its sensitivity to be s1 = 1. The ranges of the weight and the
sensitivity of coalition/group 2 are 0.5 ≤ m2 ≤ 10.5, and 0.9 ≤ s2 ≤ 4.9. The colours have
the same meaning as in the first group of simulations. It is easy to see that the simulations
(Figures 3–4) are consistent with the results in Propositions 5–6 and Corollaries 2–3.

7 Conclusion
Coalitions of countries build institutions that make them able to act in a centralized way
on many global issues. But some countries would never be able to be united into the same
coalition, because binding agreements including compensations and punishments involve a
high level of trust. This is why we observe in practice competing coalitions of countries,
states and regions. These coalitions act in concert on some global issues, but also let their
members act separately on other ones. In this paper, we have shown that decentralization
can be strategic and benefit all the members of a coalition. Such behavior acts as a
commitment to free riding. Decentralization therefore benefits a coalition when the gain
from free riding on other actors exceeds the loss caused by not internalizing the externalities
exerted by the coalition members on each other. Therefore, if the existence of a second,
smaller, coalition gives the first, larger, coalition an incentive to decentralize, a multipolar
world with these two coalitions can provide less public good than the unipolar world where
only the first coalition exists.

A striking consequence of this analysis is that a relatively small group of countries with
a strong interest in the public good is doomed if they are organized as a coalition. Indeed,
for such a coalition, the gain from cooperation is high and investing in the public good
is a dominant strategy, regardless of the behavior of the other players. Therefore, other
coalitions less interested in the public good may decide to decentralize their provision in
order to free ride on this highly motivated coalition. This potential risk invites these
pro-public good countries to think twice before activating their coalition.

Our static analysis does not embody the fact that when institutions are built, actors do
not necessarily anticipate every single future global issue. For instance, it is very likely that
the founding fathers of the United States did not have climate change in mind at the time
of drafting the constitution. What we claim is that, even in the presence of uncertainty,
actors anticipate that building cooperative institutions may encourage the rest of the world
to see them as a motivated coalition on all global issues, and thus generate more free riders.
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Appendix 1: The emission game expressed in terms of
public good
Let us show that the emission game studied in this paper is exactly the mirror of a public
good provision game, with identical properties. For the sake of simplicity, suppose that all
the actors have the same taste for the public good.
First assume an individual j living in autarchy. She provides a public good, “abatements”

in quantities aj. The marginal benefits from the public good are decreasing, and the
marginal cost of production is increasing (either because of decreasing marginal returns or
the fact that taxation is distortionary). Let the benefits function and the cost function be
denoted by f̃ and g̃ respectively. Then her utility function is

u = f̃(aj)− g̃(aj),

with f̃ ′ > 0, f̃ ′′ < 0, g̃′ > 0, g̃′′ > 0.

Consider now that individual j is part of a group i composed of mi individuals identical
to j. Hence, group i produces a quantity ai = miaj of the public good. There are no other
agents in this economy. The utility function of individual j becomes

u = f̃(ai)− g̃(aj) = f̃(ai)− g̃
( ai
mi

)
Next, assume this group i exists in a larger world which is composed of M individuals

identical to j (possibly divided into several groups) who produce an aggregate amount A
of public good. Hence, individual j now consumes a quantity A of public good. The utility
function of individual j becomes

(12) u = f̃(A)− g̃
( ai
mi

)
Finally, in the context of pollution emission, equation (4) is just a reformulation of

(12). To see this, notice that abatements correspond to pollution not emitted. Identify
individual j to a unit of weight and group i to a country of weight mi. Hence, ai = mi− qi
and A = M − Q. Also, define f(x) = −f̃(M − x) and g(x) = −g̃(1 − x). Then, (12)
rewrites

uj = g
( qi
mi

)
− f(Q)

with g′ > 0, g′′ < 0, so that g is strictly increasing and strictly concave, and f ′ > 0, f ′′ > 0
so that f is strictly increasing and strictly convex.

Appendix 2: Formal proofs
The following auxiliary result is used in several proofs.
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Lemma 7. A Nash equilibrium q = (q1, . . . , qN) of the emission game satisfies that, for
every player i, either 0 < qi < mi and si f ′(Q) = g′( qi

mi
)/mi, or qi = mi and si f ′(Q) ≤

g′(1)/mi.

Proof. It is simply a reformulation of the first order condition of the optimization problem
(5).

Proof of Lemma 1. The existence of an equilibrium can be proved via a standard approach
of variational inequalities or fixed point theorem.
The uniqueness of the equilibrium can be proved by contradiction. Suppose that q and

q∗ are two equilibria. Let us first show that Q = Q′, where Q =
∑

i qi and Q
′ =

∑
i q
′
i. If

it is not true, say, for example, Q > Q′, then f(Q) > f(Q′). According to Lemma 7, there
are only two possibilities:

(i) si f ′(Q) =
g′(

qi
mi

)

mi
and 0 < qi < mi, then qi < q′i ≤ mi;

(ii) si f ′(Q) ≤
g′(

qi
mi

)

mi
and qi = mi, then qi = q′i = mi.

In both cases, one has
∑

i qi ≤
∑

i q
′
i, which is contradictory to the hypothesis that Q > Q′.

Therefore, Q = Q′.

Proof of Lemma 2. (i) If qi < qj, then si f
′(Q) =

g′(
qj
mi

)

mi
>

g′(
qi
mj

)

mj
. This is impossible

according to Lemma 7 considering that si = sj. Hence, qi ≥ qj. Symmetrically, qj ≥ qi,
thus qi = qj and, consequently, ui = uj.

(ii) Suppose that qi
mi

< 1. Then si f ′(Q) =
g′(

qi
mi

)

mi
>

g′(
qi
mi

)

mj
. Since sj f ′(Q) ≤

g′(
qj
mj

)

mj
, one

has
g′(

qi
mi

)

mj
<

g′(
qj
mj

)

mj
because si = sj. This implies that qj

mj
< qi

mi
.

Suppose that qi
mi

= 1, then it is clear that qj
mj
≤ 1 = qi

mi
.

In the case that qj
mj

< qi
mi
≤ 1, since g(

qj
mj

) > g( qi
mi

) and si = sj, ui = g( qi
mi

)− si f(Q) >

g(
qj
mj

)− sj f(Q) = uj. In the case that qj
mj

= qi
mi

= 1, one has ui = uj = g(1)− si f(Q).

(iii) Suppose that qi
mi
< 1. If qj

mj
= 1, then g′(1)

mj
= sj f

′(Q) > si f
′(Q), which implies that

qi
mi

= 1 since mi = mj. Hence
qj
mj

< 1. Consequently,
g′(

qj
mj

)

mj
= sj f

′(Q) > si f
′(Q) =

g′(
qi
mi

)

mi
.

Hence g′( qj
mj

) > g′( qi
mi

) considering that mi = mj. Finally
qj
mj

< qi
mi

.
Suppose that qi

mi
= 1, then it is clear that qj

mj
≤ 1 = qi

mi
.

In the case that qj
mj

< qi
mi
≤ 1, since g(

qj
mj

) > g( qi
mi

) and si < sj, ui = g( qi
mi

)− si f(Q) >

g(
qj
mj

) − sj f(Q) = uj. In the case that qj
mj

= qi
mi

= 1, one has ui = g(1) − si f(Q) <

g(1)− sj f(Q) = uj.

Proof of Lemma 3. By assumption, g′(1) > 0. Hence, there exists ε such that sif ′(M) ≤
g′(1)
ε

for all i. Consequently, for all strategy profile q, sif ′(Q) ≤ sif
′(M) ≤ g′(1)

mi
as long as

mi ≤ ε.
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Proof of Lemma 4. Let q be the equilibrium in emission game Γ(N ), and q(i) the equi-
librium in emission game Γ(N (i)) induced by the decentralization of coalition i. Let
Q =

∑
k∈N qk and Q(i) =

∑
k∈N (i) q

(i)
k . The Lemma can be reformulated as follows.

If qi < mi, then, (i) Q(i) > Q; (ii) for each j ∈ N and j 6= i, either q(i)
j < qj or

q
(i)
j = qj = mj;

∑
j∈Ji q

(i)
ij
> qi; (iii) for each j ∈ N and j 6= i, uj(q(i)) < uj(q). If qi = mi,

then Q(i) = Q, q(i)
ij

= mij for all j ∈ Ji, q(i)
j = qj and uj(q(i)) = uj(q) for all j ∈ N and

j 6= i.
It is sufficient to prove for the particular case where coalition i is composed of two

countries i1 and i2 respectively of weight µ1 and µ2. The general result can be obtained
by induction on the number of the coalition’s members. Suppose that µ1 ≤ µ2. For the
simplicity of notation, denote the emissions of µ1 by η1 that of µ2 by η2 at the equilibrium
q(i) after the decentralization of i.
First consider the case qi < mi.
(i) Since µ1 ≤ µ2, according to Lemma 2, η1

µ1
≥ η2

µ2
. There are two possibilities.

a) η2
µ2
> qi

mi
. Then η1+η2

µ1+µ2
> qi

mi
, i.e. η1 + η2 > qi. Suppose that Q(i) ≤ Q. Then there

must be some player j 6= i who discharges fewer emissions now, i.e. q(i)
j < qj ≤ mj. Thus

sif
′(Q(i)) =

g′(
q
(i)
j
mj

)

mj
> si

g′(
qj
mj

)

mj
≥ f ′(Q), which implies Q(i) > Q. This contradicts the

assumption that Q(i) ≤ Q, hence Q(i) > Q.
b) η2

µ2
≤ qi

mi
and hence lower than 1. Suppose that Q(i) ≤ Q. Then g′( qi

mi
) ≥ misif

′(Q) >

µ2sif
′(Q(i)) = g′( η2

µ2
). In particular, g′( qi

mi
) > g′( η2

µ2
) which implies that qi

mi
< η2

µ2
. This

contradicts the assumption that η2
µ2
≤ qi

mi
, hence Q(i) > Q.

(ii) Suppose that there exists a player j 6= i such that qj < mj and q
(i)
j ≥ qj. Then

g′(
qj
mj

) = mjsjf
′(Q) < mjsjf

′(Q(i)) ≤ g′(
q
(i)
j

mj
), which implies qj > q(i), a contradiction. If

qj = mj, then q
(i)
j ≤ mj = qj. Since q(i)

j ≤ qj for all j ∈ N and j 6= i, while Q(i) > Q, one
deduces that η1 + η2 > qi.
(iii) Clear from (i), (ii) and the definition of utilities.
Now consider the case qi = mi. According to Lemma 7, sif ′(Q) ≤ g′(1)

mi
< g′(1)

mij
for all

j ∈ Ji, where the second inequality is due to the fact that the weight of any member of
coalition i is lower than the total weight of coalition. Therefore, the Nash equilibrium
conditions in Lemma 7 are satisfied for all player l 6= i and all member j ∈ Ji of coalition
i for Q(i) = Q. The other players’ behavior does not change after the decentralization of i
while its own members still provide no public good.

Proof of Lemma 5. Let q be the equilibrium in emission game Γ(N ), and q(i) the equilib-
rium in emission game Γ(N (i)) induced by the decentralization of coalition i, for i = 1, 2.
Denote Q =

∑
k∈N qk and Q

(i) =
∑

k∈N (i) q
(i)
k , for i = 1, 2. Suppose that s1 = s2, m1 > m2,

q1 < m1, and q
(1)
il

= m1l for each l ∈ J1 and q(2)
2k

= m2k for each k ∈ J2. The Lemma can
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be reformulated as follows: (i) Q(1) > Q(2); (ii) for each j ∈ N and j 6= 1, 2, q(1)
j < q

(2)
j or

q
(1)
j = q

(2)
j = mj; (iii) for each j ∈ N and j 6= 1, 2, uj(q(1)) < uj(q

(2)).
(i) If at q, q2 = m2, then the decentralization of coalition 2 does not change the emissions

of any player. ThusQ(2) = Q. Besides, Q(1) > Q according to Lemma 4. HenceQ(1) > Q(2).
If q2 < m2, then by Lemma 2, q1

m1
< q2

m2
< 1. Suppose that Q(1) ≤ Q(2). Let us first show

that m1 + q
(1)
2 ≥ m2 + q

(2)
1 .

Case 1: There are only two players, coalitions 1 and 2, in the game. Then m1 + q
(1)
2 ≤

m2 + q
(2)
1 is equivalent to Q(1) ≤ Q(2).

Case 2: There are more than two players in the game. Consider player j 6= 1, 2. If
q

(2)
j = mj, then mjsjf

′(Q(1)) ≤ mjsjf
′(Q(2)) ≤ g′(1), which implies that q(1)

j = mj = q
(2)
j .

If q(2)
j < mj, then mjsjf

′(Q(1)) ≤ mjsjf
′(Q(2)) = g′(

q
(2)
i

mj
). Thus, either q(1)

j ≥ q
(2)
j when

q
(1)
j < mj, or q

(1)
j = mj > q

(2)
j when q(1)

j = mj. In any case, q(1)
j ≥ q

(2)
j . In consequence,∑

j 6=1,2 q
(1)
j ≥

∑
j 6=1,2 q

(2)
j . Considering the hypothesis Q(1) ≤ Q(2), one deduces that m1 +

q
(1)
2 ≤ m2 + q

(2)
1 .

Having shown that m1 +q
(1)
2 ≤ m2 +q

(2)
1 , one obtains m1−q(1)

2 ≤ m2−q(1)
2 , which implies

that m1−q(1)2

m1
<

m2−q(1)2

m2
. Consequently, q

(1)
2

m1
>

q
(2)
1

m2
, which yields

(13)
g′(

q
(2)
1

m1
)

m1

<
g′(

q
(1)
2

m2
)

m2

.

On the other hand, since q1 < m1 and q2 < m2, Lemma 4 implies that q(2)
1 < q1 and

q
(1)
2 < q2. Therefore,

g′(
q
(2)
1
m1

)

m1
= s1f

′(Q(2)) ≥ s2f
′(Q(1)) =

g′(
q
(1)
2
m2

)

m2
. This is contradictory to

(13).
(ii) First notice that, according to (i), f ′(Q(2)) < f ′(Q(1)). Consider player j 6= 1, 2.
If q(1)

j = mj, then mjsjf
′(Q(2)) < mjsjf

′(Q(1)) ≤ g(1). Thus, q(2)
j = mj.

If q(1)
j < mj, then one has only to prove the result in the case that q(2)

j < mj. One has

g′(
q
(2)
j

mj
) = mjsjf

′(Q(2)) < mjsjf
′(Q(1)) = g′(

q
(1)
j

mj
), which implies that q(2)

j > q
(1)
j .

(iii) Clear from (i), (ii) and the definition of utilities.

Proof of Lemma 6. First consider the unilateral decentralization of coalition i.
(i) According to Lemma 4, the emission level of the members of coalition i does not

change before and after its unilateral decentralization: they never provide any public good,
while the other players’ behavior does not change either.
(ii) First notice that Q = qi+

∑
j 6=i qj, and Q

(i) =
∑

l∈Ji q
(i)
il

+
∑

j 6=i qj. For the simplicity
of notation, let ωi =

∑
l∈Ji q

(i)
il

and Q−i =
∑

j 6=i qj. According to Lemma 4, Q(i) > Q, i.e.
wi > qi. Besides, Q(i) −Qi = ωi − qi.
Since qi < mi, one knows that sif ′(Q) =

g′(
qi
mi

)

mi
by Lemma 2. Let this strictly positive

real number be denoted by A. Then, because of the strict convexity of f and the strict
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concavity of g, one deduces that

f ′(x) > A, ∀x ∈ (Q,M),

g′( x
mi

)

mi

=
d
dx
g(

x

mi

) < A,∀x ∈ (qi,mi),

Therefore,

ui(q)−
∑
il∈Ji

mil

mi

uil(q
(i)) =

[
g
( qi
mi

)
− sif(Q)

]
−
[
g
( ωi
mi

)
− sif(Q(i))

]
= si[f(Q(i) − f(Q)]−

[
g
( ωi
mi

)
− g
( qi
mi

)]
=

∫ Q(i)

Q

sif
′(x)dx−

∫ ωi

qi

d
dx
g
( x
mi

)
dx > (Q(i) −Q)A− (ωi − qi)A = 0.

Finally, notice that coalitions i’s utility can only be further reduced by the simultaneous
decentralization of any of the other coalitions, according to Lemma 4.

Proof of Proposition 1. According to Lemma 6, v(1,2)
1 < v

(2)
1 and v(1,2)

2 < v
(1)
2 (since q(1)

2 <
m2). Hence the strategy pair (D,D) is never a Nash equilibrium.
The following results can be obtained by Lemma 4:

q
(2)
1 ≤ q1 < m1 ⇒ v

(2)
1 < u1,

q
(1)
2 ≤ q2 ≤ m2 ⇒ v

(1)
2 < u2,

q
(1)
2 < m2 ⇒ v

(1,2)
1 < v

(1)
1 ,

q
(2)
1 < m1 ⇒ v

(1,2)
2 ≤ v

(2)
2 .

First notice that it is impossible to have u1 = v
(1)
1 and u2 = v

(2)
2 . Otherwise, q1 = m1,

absurd according to the hypothesis.
(i): If u1 > v

(1)
1 and u2 > v

(2)
2 , it is clear that (C,C) is the unique, strict and thus stable

equilibrium. If u1 > v
(1)
1 and u2 = v

(2)
2 , then (C,C), (C,D) and all the strategy pairs

where coalition 1 plays C and coalition 2 plays a mixed strategy are equilibria. However,
only (C,C) is stable. Indeed, consider an equilibrium where coalition 2 plays D with a
strictly positive probability λ ∈]0, 1]. If coalition 1 perturbs its strategy by playing D with
a strictly positive probability, then the unique best reply of coalition 2 is to play C with
probability 1, since v(1,2)

2 < v
(1)
2 and u2 = v

(2)
2 . The symmetric analysis applies to the case

where u1 = v
(1)
1 and u2 > v

(2)
2 .

(ii): If u1 > v
(1)
1 and u2 < v

(2)
2 , it is clear that (C,D) is the unique, strict and thus stable

equilibrium. If u1 = v
(1)
1 and u2 < v

(2)
2 , then there is another equilibrium (D,C). However

this equilibrium is not stable because if coalition 2 perturbs its strategy by playing D with
a strictly positive probability, then the unique best reply of coalition 1 is to play C with
probability 1, since u1 = v

(1)
1 and v(1,2)

1 < v
(2)
1 .
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(iii): Symmetric to (ii).
(iv): It is clear that (C,D) and (D,C) are two strict and thus stable equilibria. There

is another equilibrium which is completely mixed:
( v

(1)
2 −v

(1,2)
2

v
(1)
2 −v

(1,2)
2 +v

(2)
2 −u2

C +
v
(2)
2 −u2

v
(1)
2 −v

(1,2)
2 +v

(2)
2 −u2

D,

v
(2)
1 −v

(1,2)
1

v
(2)
1 −v

(1,2)
1 +v

(1)
1 −u1

C +
v
(1)
1 −u1

v
(2)
1 −v

(1,2)
1 +v

(1)
1 −u1

D
)
. However it is not stable. For example, for all the

strategy of coalition 2 which plays C with probability greater than v
(2)
1 −v

(1,2)
1

v
(2)
1 −v

(1,2)
1 +v

(1)
1 −u1

, the
unique best replay of coalition 1 is to play D with probability 1. In turn, the unique best
reply of coalition 2 is to play C with probability 1.

Proof of Proposition 2. In each case, group 1 compare v(2)
2 and all its equilibrium utilities

in the decentralization game on the right hand side of Table 2. It activates the coalition if
it is better off at at least one of the latter; it does not activate the coalition if it is worse
off at at least one of the latter; it is indifferent if it has the same utilities at the latter
equilibria. The remaining is easy to deduce from Proposition 1.

Proof of Proposition 3. (i)-(ii): Consider the case Q̃ ≥ Q. On the on hand, by the same
arguments as in the proof of Lemma 1, one can show that for each j ∈ N and j 6= i,
q̃j ≤ qj ≤ mj. On the other hand, for i, note that s̃if ′(Q̃i) > sif(Q). If qi = mi, then

q̃i ≤ qi. If qi < mi, then g′(1)
mi

<
g′(

qi
mi

)

mi
= sif

′(Q) < s̃if
′(Q̃). Hence q̃i < mi and

g′(
q̃i
mi

)

mi
=

s̃if
′(Q̃) > sif

′(Q) =
g′(

qi
mi

)

mi
, which implies that q̃i < qi. Therefore

∑
j∈N q̃j ≤

∑
j∈N qj.

Since Q̃ ≥ Q, this is possible only if q̃i = qi = mi and q̃j = qj for all j 6= i.
Consider the case Q̃ < Q. By the same arguments as in the proof of Lemma 1, for each

j 6= i, either q̃j > qj, or q̃j = qj = mj. Hence q̃i < qi.
(iii) The result for the case q̃i = qi = mi is immediate.
In the case that q̃i < qi ≤ mi, recall that Q̃ < Q. For each j 6= i, since q̃j ≥ qj, one

has uj(q) < uj(q̃). Let constant B = sif
′(Q). It is not greater than

g(
qi
mi

)

mi
(condition for

equilibrium q). Then, for i,

ui(q)− ui(q̃) =
[
g
( qi
mi

)
− sif(Q)

]
−
[
g
( q̃i
mi

)
− s̃if(Q̃)

]
=
[
g
( qi
mi

)
− g
( q̃i
mi

)]
+ [sif(Q̃)− sif(Q)] + [s̃if(Q̃)− sif(Q̃)]

=

∫ qi

q̃i

d
dx
g
( x
mi

)
dx−

∫ Q

Q̃

sif
′(x) dx+ (s̃i − si)f(Q̃)

> (qi − q̃i)B − (Q− Q̃)B = [(qi − q̃i)− (Q− Q̃)]B

≥ 0

The first inequality is due to the concavity of g and the convexity of f . The second
inequality is because qj ≥ q̃j for all j 6= i.
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Proof of Proposition 4. 1. Suppose that q̃i
m̃i
> qi

mi
. Then q̃i > qi since m̃i > mi. Also,

g′( q̃i
m̃i

)

m̃i

<
g′( qi

mi
)

m̃i

<
g′( qi

mi
)

mi

.

If Q̃ ≤ Q, then q̃j ≥ qj for all j. This is impossible because q̃i > qi. Hence Q̃ > Q, and thus

sif
′(Q) < sif

′(Q̃) ≤
g′(

q̃i
m̃i

)

m̃i
<

g′(
qi
mi

)

mi
, which implies that qi = mi. This is absurd because

q̃i
m̃i
> qi

mi
.

2. Under Assumption 2, consider the case where
g′(

qi
mi

)

mi
= sif(Q). Suppose Q̃ ≥ Q. Then

for each j 6= i, q̃j ≤ qj, hence q̃i ≥ qi and in consequence,

g′( q̃i
m̃i

)

m̃i

≤
g′( qi

m̃i
)

m̃i

<
g′( qi

mi
)

mi

,

where the second inequality is because g′(
qi
x

)

x
is strictly decreasing in x. One has sif(Q̃) ≤

g′(
q̃i
m̃i

)

m̃i
<

g′(
qi
mi

)

mi
= sif(Q) which implies that Q̃ < Q. This is absurd. We have thus proved

Q̃ < Q. Consequently, q̃j ≥ qj for all j 6= i where equality holds only if qj = mj. Therefore

q̃i < qi. It is obvious that uj(q̃) > uj(q̃) for all j 6= i. Let constant B = sif
′(Q) =

g(
qi
mi

)

mi
.

Then, for i,

ui(q)− ui(q̃) =
[
g
( qi
mi

)
− sif(Q)

]
−
[
g
( q̃i
m̃i

)
− sif(Q̃)

]
=
[
g
( qi
mi

)
− g
( q̃i
mi

)]
− [sif(Q)− sif(Q̃)] +

[
g
( q̃i
mi

)
− g
( q̃i
m̃i

)]
=

∫ qi

q̃i

d
dx
g
( x
mi

)
dx−

∫ Q

Q̃

sif
′(x) dx+

[
g
( q̃i
mi

)
− g
( q̃i
m̃i

)]
> (qi − q̃i)B − (Q− Q̃)B = [(qi − q̃i)− (Q− Q̃)]B

≥ 0

The first inequality is due to the concavity of g, the convexity of f and the fact that
mi < m̃i. The second inequality is because qj ≥ q̃j for all j 6= i.

3.(1) Consider the case where
g′(

qi
mi

)

mi
> sif(Q) (so that qi = mi) and suppose that m̃ is

close enough to mi for
g′(

qi
m̃i

)

m̃i
> sif(Q).

Suppose that Q̃ ≤ Q, then q̃j ≥ qj for all j 6= i. Hence q̃i ≤ qi = mi < m̃i. As a

consequence, sif(Q̃) =
g′(

q̃i
m̃i

)

m̃i
≥

g′(
qi
m̃i

)

m̃i
> sif(Q). It implies that Q̃ > Q, which is absurd.

We have thus proved Q̃ > Q. It follows that q̃j ≤ qj for all j 6= i, and hence q̃i > qi. It is
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obvious that uj(q̃) < uj(q̃) for all j 6= i. For i,

ui(q)− ui(q̃) =
[
g
( qi
mi

)
− sif(Q)

]
−
[
g
( q̃i
m̃i

)
− sif(Q̃)

]
=
[
g
( qi
mi

)
− g
( q̃i
m̃i

)]
+ [sif(Q̃)− sif(Q)] > 0,

because qi
mi
≥ q̃i

m̃i
and Q̃ > Q.

3.(2) Under Assumption 2, consider the case where
g′(

qi
mi

)

mi
> sif(Q). Let m̂i > mi be

such that
g′(

qi
m̂i

)

m̂i
= sif(Q). Then it is not difficult to see that q̂ = q, and consequently

Q̂ = Q. It follows immediately the uj(q̄) = uj(q) for all j ≤ i and ui(q̂) = g( qi
m̄i

)−sif(Q) <
g( qi

mi
) − sif(Q) = ui(q). For the result for all m̃i > m̂i, one has only to apply the results

in (2) by replacing mi there by m̂i.

Proof of Proposition 5. 1. First note that q(2)
1 (s2) is a constant. Indeed, when coalition 1

centralizes and coalition 2 decentralizes, the behaviour of the members of coalition 2 does
not change when their sensitivity varies, and the remaining parameters – m1, s1 and m2

– keep the same. Hence the equilibrium behaviour of coalition 1 does not change either.
One has

u2(s2) = g
(q2(s2)

m2

)
− s2f(Q(s2)),

v
(2)
2 (s2) = g(1)− s2f(q

(2)
1 (s2) +m2),

v
(1)
2 (s2) = g(

q
(1)
2 (s2)

m2

)− s2f(m1 + q
(1)
2 (s2)).

By Lemma 4, q(2)
1 (s2) + m2 > Q(s2), hence constant D := f(q

(2)
1 (s2) + m2) − f(Q(s2))

is strictly positive. According to Proposition 3, for all s2 ≥ s2, Q(s2) ≤ Q(s2). Therefore
u2(s2) ≥ g(0)− s2f(Q(s2)). Hence

u2(s2)− v(2)
2 (s2) ≥ g(0)− s2f(Q(s2))− g(1) + s2f(q

(2)
1 (s2) +m2) = g(0)− g(1) + s2D.

This implies that u2(s2)− v(2)
2 (s2) tends to +∞ when s2 goes to +∞. In particular, there

exists s̄2 such that u2(s2) > v
(2)
2 (s2) for all s2 > s̄2. Considering Lemma 6(ii), this shows

that D is a strictly dominated strategy for coalition 2 for all s2 > s̄2. Then (C,D) is not
an equilibrium of the game.
2. According to Proposition 3, q2(s2) and q(1)

2 (s2) are both strictly decreasing in s2 for
s2 ≥ g′(1)

f ′(m1+m2)
(in particular q2(s2) < m2 and q(1)

2 (s2) < m2). There are two consequences.

Firstly, this means there exists a limit of q2(s2) and a limit of q(1)
2 (s2) as s2 goes to +∞,
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which are respectively denoted by q2,l and q
(1)
2,l . Secondly,

(14) s2f
′(q1(s2) + q2(s2)) =

g′( q2(s2)
m2

)

m2

,

and s2f
′(m1 + q

(1)
2 (s2)) = g′(

q
(1)
2 (s2)

m2
)/m2. Let us show that q2,l = q

(1)
2,l = 0. Otherwise if

q2,l > 0 then the left hand side of (14) tends to +∞ when s2 goes to +∞, while the right

hand side of (14) has a strictly positive limit
g′(

q2,l
m2

)

m2
. This is absurd. Similar arguments

apply to q(1)
2,l . Hence q2,l = q

(1)
2,l = 0 and, consequently, q1(s2) tends to q1,l, where q1,l is also

the optimal level of emissions of coalition 1 if it was the only player.
If q1,l < m1 (hence g′(1) < s1f

′(m1)), then

lim
s2→+∞

u1(s2) = g(
q1,l

m1

)− s1f(q1,l) > g(1)− s1f(m1) = lim
s2→+∞

v
(1)
1 (s2).

Hence C strictly dominates D for coalition 1 for s2 large enough. The unique equilibrium
of the decentralization game is (C,C).
If q1,l = m1 and g′(1) > s1f

′(m1), then for s2 large enough, g′(1) > s1f
′(m1 + q2(s2)).

Therefore q1(s2) = m1 and, consequently, coalition 1 is indifferent between playing C and
D. Since we consider only the (locally) stable equilibrium, the weakly dominated strategy
D is not played so that (C,C) is the unique equilibrium.
If q1,l = m1 and g′(1) = s1f

′(m1), then lims2→+∞ u2(s2) = lims2→+∞ v
(1)
2 (s2). According

to the result of the first part of this proposition, this implies that for s2 large enough,
v

(1)
2 (s2) > v

(2)
2 (s2).

Proof of Proposition 6. 1. One has v(2)
2 (m2) = g(1)−s2f(q

(2)
1 (m2)+m2) ≤ g(1)−s2f(m2),

which implies that v(2)
2 (m2) tends to −∞ as m2 goes to +∞. On the other hand, u2(m2) =

g( q2(m2)
m2

) − s2f(Q(m2)) > g(0) − s2f(Q(m2)), and v
(1)
2 (m2) = g(

q
(1)
2 (m2)

m2
) − s2f(m1 +

q
(1)
2 (m2)) > g(0) − s2f(m1 + q(1)(m2)), because Q(m2) < Q(m2) and q(1)

2 (m2) < q
(1)
2 (m2)

according to Proposition 4. These imply that u2(m2) and v
(1)
2 (m2) have a finite lower

bound as m2 goes to +∞.
2. The proof is similar to that of Proposition 5.2.

Proof of Corollary 2. According to Proposition 5, if group 2 activates the coalition, it will
have the utility at the equilibrium (C,C) for s2 large enough. If it does not activate the
coalition, it will have the utility of an active coalition 2 at (C,D). However, the same
proposition also says that the average utility of coalition 2 at (C,D) is strictly lower than
at (C,C) for s2 large enough.

Proof of Corollary 3. The same is similar to that of Corollary 2.
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Appendix 3: Detailed resolution of the examples
The four examples all follow a generic form for the per-unit utilities

u1 = 3l
( q1

m1

) 1
2 − (q1 + q2)

3
2 , u2 = 3l

( q2

m2

) 1
2 − s(q1 + q2)

3
2

When both groups act as centralized coalition, maximizing with respect to q1 and q2

respectively yields

(15) q1 + q2 =
l2

m1q1

= λ, q1 + q2 =
l2

s2m2q2

= λ,

from which we obtain

(16) q1 =
l2

m1λ
, q2 =

l2

s2m2λ
, q1 + q2 =

l2

λ
(

1

m1

+
1

s2m2

).

Using q1 + q2 = λ, we deduce λ2 = l2( 1
m1

+ 1
s2m2

), i.e.

λ = l

√
1

m1

+
1

s2m2

.

If both q1 and q2 have interior solutions ∈ (0,mi), their equilibrium values are found by
plugging the value of λ into (16):

q∗1 =
l

m1

√
1
m1

+ 1
s2m2

, q∗2 =
l

s2m2

√
1
m1

+ 1
s2m2

If for some j ∈ {1, 2}, q∗j > mj, then there is no interior solution and the equilibrium
value of qj is qj = mj. In this case, the equilibrium emissions of the other player i are
computed by taking the maximum emission of j as given. Let q̂i be a potential interior
optimal value of qi given qj = mj. The first equation in (15) implies that q̂i + mj = l2

m1q̂1

or, equivalently, m1q̂1
2 +m1m2q̂1 − l2 = 0, which yields the equilibrium value:

(17) q1 = min{m1, q̂1}, where q̂1 =

√
m2

2 + 4l2

m1
−m2

2
.

Similarly,

(18) q2 = min{m2, q̂2}, where q̂2 =

√
m2

1 + 4l2

s2m2
−m1

2
.

38



Now if only group i acts as a centralized coalition, while group j is either a decentralized
coalition or a group of countries that has not activated the coalition, then countries in
group j free ride so that qj = mj. In consequence, qi is given by (17)-(18).
Finally, if both groups are either a decentralized coalition or a group of countries who

have not activated the coalition between them, then qi = mi for both i = 1, 2.
The parameters used in the four examples are as follows:

• In example 1, l = s = m1 = m2 = 1.

• In example 2, l = 1
3
and s = m1 = m2 = 1.

• In example 3, l = s = 1, m1 = 1.18 and m2 = 0.82.

• In example 4, l = 1, s = 10; m1 = 1.4 and m2 = 0.6.
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