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Abstract

We present an integrated model of cancer risk valuation. The model extends the stan-
dard one-period value-of-statistical-life model to three health prospects: healthy, ill,
and dead. We derive willingness-to-pay values for prevention efforts that reduce the
cancer incidence rate as well as for treatments that lower the corresponding health de-
terioration and mortality rates. We find that the demand value of prevention always
exceeds that of treatment. People often overweight small risks and underweight large
ones. We use the rank dependent utility structure to explore how the demand for can-
cer prevention and treatment alters when people evaluate probabilities in a non-linear
manner. For incidence and mortality rates associated with common types of cancers,
the inverse-S shaped probability weighting found in most experimental studies leads to
a significant increment in the demand values of both treatment and prevention.
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1 Introduction

How should government expenditure on health be allocated to maximize social welfare? An-

swers to this question require understanding people’s preferences for different health inter-

ventions (Fuchs and Zeckhauser 1997). In this paper, we develop a stylized health valuation

framework and apply it to the combat of cancer. Since the 1970s significant progress has

been made in preventing, diagnosing, and treating cancer. However, cancer remains one of

the leading causes of death.1 Some researchers have therefore argued that society spends too

much on the development of new cancer drugs and other treatment methods, and too little

on prevention and diagnosis (Sporn 1996, Chabner and Roberts 2005, Faguet 2005). If that

claim were true, then society would not operate at the production possibility frontier (where

the good to be produced is additional life years for cancer patients) and a Pareto improve-

ment could be achieved by re-allocating resources from R&D to prevention and screening

efforts.

Efficiency concerns have been raised against the supply side of fighting cancer, but

similar arguments hold for the demand side as well (Bosworth et al. 2010). Consider empirical

studies that suggest people value a reduction in the risk of dying from cancer more than they

value a reduction in the risk of dying from other causes (Hammitt and Liu 2004, Van Houtven

et al. 2008, Viscusi et al. 2013). Such preferences should be reflected in the allocation of

the health budget, as they are essential to health policy assessments; e.g. to quantifying the

social value of the U.S. war on cancer (Lakdawalla et al. 2010).

In this paper, we develop willingness-to-pay (WTP) metrics for prevention-based and

treatment-based health interventions to study value tradeoffs between incidence rate, mor-

tality rate, and the life quality of cancer patients. The proposed model extends the standard

economic model of preferences for mortality risk reductions (Jones-Lee 1974, Weinstein et

al. 1980), which spurred the development of the value of statistical life (VSL) metric. In
1In 2012 cancer caused approximately 8.2 million deaths worldwide, making it the leading cause of death

ahead of coronary heart diseases (Ferlay et al. 2015).
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the spirit of Gerking et al. (2014), we presume that disease-induced mortality is conditional

on suffering the disease. Therefore, our model includes three health states: healthy, ill, and

dead. The explicit inclusion of the illness state allows us to identify the relative value of a

gain in life quality when ill (Hammitt 2002).

While consistent with the standard economic approach of valuing health risks, our

baseline model does not capture that many people have neither a clear understanding of the

risk of developing cancer, nor of the likelihoods of various outcomes of screening tests and

treatment methods (Slovic et al. 2005, Peters et al. 2006). When presented with statistical

information, they tend to overemphasize small probabilities and underemphasize large ones.

This implies an inverse-S shaped probability weighting function (Tversky and Wakker 1995).

As most cancers involve small incidence and large mortality rates, probability weighting may

significantly affect how people value such risks. In order to address the non-linear weighting

of probabilities, we follow Bleichrodt and Eeckhoudt (2006) and apply the rank dependent

utility (RDU) framework to our model. Calibrations of the RDU version of our model to

U.S. lung and skin cancer rates suggest that non-linear probability weighting significantly

increases the demand value of reductions in both cancer incidence and mortality.

The paper proceeds as follows. In section 2, we introduce the baseline model and

derive the WTP metrics for reductions in the incidence rate, the conditional mortality, and

the health deterioration rate. We compare their relative size assuming real values of these

rates for some types of cancer. In section 3, we replace the linear probability measures of the

expected utility model by non-linear probability weighting and compare the rank dependent

WTP metrics to those derived for the baseline model. Section 4 concludes.

2 Baseline model

In this section, we introduce the baseline model of cancer risk valuation and derive WTP

values for a reduction in the incidence rate, the mortality rate and the deterioration of life
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quality, respectively. We loosely follow the notation of Bleichrodt et al. (2003).

2.1 Set up

Let an individual derive utility U(W,H) from wealth W and health H. We denote first

(second) derivatives with respect to wealth by the subscript 1 (11) and those with respect

to health by the subscript 2 (22). We make the following conventional assumptions about

U(W,H):

• Non-satiation with respect to money: U1(W,H) > 0;

• Non-satiation with respect to health: U2(W,H) > 0;

• Weak financial risk aversion: U11(W,H) ≤ 0;

• Weak health risk aversion: U22(W,H) ≤ 0; and

• Correlation affinity: U12(W,H) ≥ 0.

The first two assumptions are the usual non-satiation assumptions. The next two assumptions

state that less risk over either health or wealth is preferable to more risk. The last assumption

implies that the marginal utility of wealth does not decrease with better health. In other

words, a healthy person enjoys the benefits of an extra dollar at least as much as an ill person.

Finkelstein et al. (2013) provide empirical support for this assumption.

Now, consider a target disease that threatens health with probability q = pr(sick).

Without further knowledge about the individual’s pre-condition and genetic constitution,

it is sensible to assume that q equals the population incidence rate of the target disease.

Conditional on falling ill, the individual faces a probability p = pr(death|sick) to die from

the disease. Thus, there are three possible states of the world in our model:

1. Remaining at the current (good) health level HG with probability (1− q);

2. Developing the disease and surviving in the reduced (bad) health state HB with prob-

ability q(1− p);

4



3. Dying from the target disease, which implies health HD with probability qp.

Without loss of generality, we will measure health quality on a unit scale so that HG = 1,

HD = 0, and HB = 1 − h, where h < 1 is the health deterioration expected from the non-

fatal outcome of the disease. Each of the above health conditions is associated with a state-

dependent utility function U(W,HG) > U(W,HB) > U(W,HD) satisfying the preferential

order: HG � HB � HD. More precisely, we assume that for any given wealth endowment W

utility can be normalized to U(W,HG) = 1, U(W,HD) = 0, and 0 < U(W,HB) < 1.

Under the assumptions made so far, U2(W,HB) is unbounded above. Yet, since the

average value of U2(W,H) between HB and HD is U(W,HB)/HB and the average value

between HB and HG is (1− U(W,HB))/(1−HB), we may define an upper bound assuming

that the sign of U22(W,H) does not change between HD and HG. Then, these two values

bound U2(W,HB). If we further assume U22(W,H) < 0, then U(W,HB)/HB > 1 and (1 −

U(W,HB))/(1 − HB) < 1. Based on these assumptions, which are common in the health

risk literature, we argue that U2(W,HB) is on the order of 1 and equals 1 iff the individual

is risk neutral with respect to health. With risk aversion, we obtain the following bounds:

(1− U(W,HB))/(1−HB) < U2(W,HB) < U(W,HB)/HB.

Based on the above assumptions, the individual’s expected utility takes the form:

E[U(W,H)] = (1− q)U(W,HG) + q[(1− p)U(W,HB) + pU(W,HD)]. (1)

We are interested in how much a representative individual is willing to pay for a reduction in

either the incidence rate q, the conditional mortality rate p, or the health deterioration rate

h associated with a particular (cancer) disease.

Let us first define the compensating variation Cq = C(W,H, θq, p, q) as the amount of

money the individual is willing to give up in order to reduce the incidence rate q by the

amount θq. By definition, the payment of Cq for the risk reduction θq implies indifference
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between the utility level before and after the transfer. Hence,

E[U(W,H)] = (1−q+θq)U(W−Cq, HG)+(q−θq)[(1−p)U(W−Cq, HB)+pU(W−Cq, HD)].

(2)

Next, we differentiate Eq. (2) with respect to the risk reduction θq to obtain the first

order condition:

∂E[U ]
∂θq

= U(W − Cq, HG)− [(1− p)U(W − Cq, HB) + pU(W − Cq, HD)]−[
(1− q + θq)∂UG∂Cq

∂Cq
∂θq
− (q − θq)[(1− p)∂UB∂Cq

∂Cq
∂θq

+ p∂UD
∂Cq

∂Cq
∂θq

]
]

= 0.
(3)

Solving Eq. (3) for ∂Cq
∂θq

yields the marginal WTP for reductions in the risk of contracting

the disease:

MWTPq ≡ ∂Cq
∂θq

= U(W−Cq ,HG)−[(1−p)U(W−Cq ,HB)+pU(W−Cq ,HD)]
E[U1(W−Cq ,H)] > 0, (4)

where the numerator equals the gain in expected utility from avoiding the disease and the

denominator is the expected marginal utility of consumption, both evaluated after the pay-

ment of Cq.2 It follows from Eq. (4) that MWTPq increases with both the risk of dying

from the disease (i.e., ∂2Cq
∂θq∂p

> 0) and the risk of losing more life quality when surviving (i.e.,
∂2Cq
∂θq∂h

> 0).

Similarly, we define the compensating variation Cp = C(W,H, θp, p, q) for a reduction

in the disease-specific mortality risk p by the amount θp. The corresponding marginal WTP

is given by

MWTPp ≡ ∂Cp
∂θp

= q[U(W−Cp,HB)−U(W−Cp,HD)]
E[U1(W−Cp,H)] > 0, (5)

where the numerator equals the gain in expected utility from reduced cancer mortality and
2Notice that Cq goes to zero when the reduction in the incidence of the disease becomes infinitesimally

small. If contracting the disease results in certain death (or a health deterioration that is equally bad), i.e.
p = pr(death|sick) = 1, then (1− q) becomes the survival probability and Eq. (4) simplifies to the standard
VSL expression (Jones-Lee 1974; Weinstein et al. 1980). This highlights the close link between our model
and the VSL literature.
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the denominator is the expected marginal utility of consumption, both evaluated after the

payment of Cp. A higher incidence rate increasesMWTPp (i.e., ∂2Cp
∂θp∂q

> 0), while the prospect

of a more painful course of disease may decrease or increase MWTPp depending on whether

or not the effect of poorer health on the marginal utility of consumption (in the bad health

state) outweighs its beneficial effect on the total utility of survival (Hammitt 2002).

Lastly, consider the compensating variation Ch = C(W,H, θh, p, q) for a reduction in

the severity of the disease by the amount θh. The corresponding marginal WTP is given by

MWTPh ≡ ∂Ch
∂θh

= q(1−p)U2(W−Ch,HB+θh)
E[U1(W−Ch,H)] > 0, (6)

where the numerator equals the gain in expected utility due to a less severe form of the

disease. MWTPh rises with increasing risk of contracting the disease (i.e., ∂2Ch
∂θh∂q

> 0). This

makes intuitive sense because a higher incidence rate of the disease makes the individual more

likely to benefit from therapies that increase the life quality. In contrast, it is not possible

to sign the effect of an increment in the mortality rate on the marginal WTP. A larger risk

of dying conditional on being ill reduces the benefit of therapy (i.e. the numerator), but it

simultaneously reduces the expected utility from consumption (i.e. the denominator). Again,

it is an empirical question which of the two opposed effects is stronger. We summarize all of

the above findings in Result I.

Result I. Health interventions that improve any of the three health dimensions q, p, and h are

valuable. However, the WTP values associated with an improvement in one of the dimensions

are not independent of the other two dimensions. In particular, a higher incidence rate

increases the WTP for reductions in p and h; a higher conditional mortality rate increases

WTP for reductions in q, but its effect on the demand value of reductions in h is ambiguous;

a more severe form of the disease increases WTP for reductions in q, but its effect on the

demand value of reductions in p is again ambiguous.
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2.2 Relative value of interventions

Result I indicates that the individual is willing to pay for interventions that ameliorate any

of the three health dimensions. But which one is the most valuable dimension in terms of

demand value? We compare the marginal value of improvements in the three dimensions by

evaluating the WTP metrics (4–6) at the baseline level in order to identify the most efficient

way to allocate a given health budget. That is, we set θ• = 0 (where • is a placeholder

for q, p, and h) implying C• = 0. Therefore, the three WTP metrics share a common

denominator. The corresponding ratios give us the marginal rate of substitution between

any two dimensions and permit assessing the relative value of prevention vs life quality vs

prolongation of life. We summarize the comparisons of the dimension-specific marginal WTP

metrics in the following three results.3

Result II. Reductions in q are more valuable than reductions in p iff:

MWTPq > MWTPp ↔
1− U(W,HB)
U(W,HB) > q − p.

Since severe diseases including most forms of cancer are characterized by p� q, prevention

is more valuable than treatment for such diseases. This may seem counterintuitive at first

sight. Notice, however, that the numerator in Eq. (5) is scaled by q, implying that it is

inefficient to invest in reducing p if q is small.

Result III. Reductions in h are more valuable than reductions in p iff:

MWTPh > MWTPp ↔ (1− p)U2(W,HB) > U(W,HB).

Assuming risk aversion over health, we know that U2(W,HB) < U(W,HB)/(1 − h). Substi-

tuting this upper bound, we obtain h > p as a necessary condition for MWTPh > MWTPp.

Likewise, we can substitute the lower bound to obtain (1−p)/h > U(W,HB)/(1−U(W,HB)),

which is a sufficient condition for MWTPh > MWTPp. One situation in which the latter
3Detailed derivations are relegated to Appendix A.
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condition is met is when U(W,HB) → 0. In words, if life quality in the bad health state is

so low that the individual is indifferent between staying alive and dying, palliative actions

become more valuable than prolonging life (and further suffering).

Result IV. Reductions in q are typically more valuable than reductions in h. We obtain the

following criterion:

MWTPq > MWTPh ↔ 1− (1− p)U(W,HB) > q(1− p)U2(W,HB).

We again substitute U(W,HB)/(1−h) for U2(W,HB), yielding the following sufficiency condi-

tion for MWTPq > MWTPh : 1−(1−p)U(W,HB) > q(1−p)U(W,HB)/(1−h). Substituting

the lower bound yields a second condition for MWTPq > MWTPh : 1− (1− p)U(W,HB) >

q(1 − p)(1 − U(W,HB))/h. These conditions are met if either q or U(W,HB) is sufficiently

small, or p is sufficiently large—criteria that are commonly associated with cancer diseases.

3 Probability weighting

Results II-IV provide important insights on the relative value of the different ways to reduce

the health endpoints associated with the target disease. Yet we have so far ignored that people

often lack a clear understanding of health risks, particularly of the risks posed by cancer and

other dreaded diseases (Peters et al. 2006). A robust finding in recent experiments on

risky health decisions is that people overweight small probabilities and underweight large

ones (Bleichrodt and Pinto 2000, Abellan-Perpiñan et al. 2009, Attema et al. 2013). We

follow Bleichrodt and Eeckhoudt (2006) and apply the RDU framework to study the effect

of probability weighting on cancer risk valuation.

The hypothesis of RDU is that any probability measure P is evaluated as if they were

transformed by a weighting function w [P ] such that w [0] = 0, w [1] = 1, w [P ] > P for P

close 0, w [P ] < P for P close to 1, and w [P ] = P at some intermediate value. If w [P ] is
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differentiable, then w′ > 0 for all P and w′ > 1 for P in the vicinity of 0 and 1, respectively.4

One particularly popular weighting function is Prelec’s (1998) two-parameter specification

w [P ] = exp(−β(− lnP )α), where the parameter β governs the curvature and the parameter

α controls the elevation of the weighting function. Bleichrodt and Eeckhoudt (2006) made

this functional choice for two reasons. First, the Prelec weighting function is continuously

differentiable with:
∂w [P ]
∂P

= βα(− lnP )α−1

P
exp(−β(− lnP )α).

Second, Bleichrodt and Pinto (2000) elicited α̂ = 0.534 and β̂ = 1.083 in the health

risk/longevity context. Below, we will use the Bleichrodt-Pinto (BP) calibration of the Pr-

elec weighting function as a benchmark. The model can be calibrated with other probability

weighting functions, however.5 Hence, we emphasize that our results do not depend on the

functional form of w [P ] .

3.1 WTP metrics under probability weighting

We assume that each probability source is weighted separately to reflect source independence

(Wakker 2010). The individual could, of course, transform the compound lottery of falling

ill and surviving (dying) into a simple lottery. Yet, it seems to us that developing the disease

and dying from the disease are two different sources of uncertainty, which the individual

might weight differently. The rank-dependent counterpart of the expected utility function

(1) is given by

RD[U(W,H)] = w [1− q]U(W,HG)+

(1− w [1− q]) {w [1− p]U(W,HB) + (1− w [1− p])U(W,HD)} .
(7)

4Any such weighting function displays an inverse S-shaped form (Tversky and Wakker 1995).
5Fehr-Duda and Epper (2012) provide a thorough review of the probability weighting functions in use.
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Similar to Section 2, we derive WTP metrics for improvements in q, p, and h. In

particular, we can re-write Eq. (7) as

RD[U(W,H)] = w [1− q + θq]U(W − Cw
q , HG)+

(1− w [1− q + θq])
{
w [1− p]U(W − Cw

q , HB) + (1− w [1− p])U(W − Cw
q , HD)

}
.

(8)

where Cw
q = C(W,H, θq, p, q, w[.]) denotes the compensating variation for a reduction in the

incidence rate q of the target disease by the amount θq in the presence of probability weighting

by the function w [.]. The corresponding marginal WTP under probability weighting is:

MWTPw
q ≡

∂Cw
q

∂θq
= w′[1−q+θq ]{U(W−Cwq ,HG)−w[1−p]U(W−Cwq ,HB)−(1−w[1−p])U(W−Cwq ,HD)}

RD[U1(W−Cwq ,H)] > 0.
(9)

In the same way, we obtain the marginal WTP for the reduction in the disease-specific

mortality rate p:

MWTPw
p ≡

∂Cwp
∂θp

= (1−w[1−q])w′[1−p+θp]{U(W−Cwp ,HB)−U(W−Cwp ,HD)}
RD[U1(W−Cwp ,H)] > 0,

(10)

and the marginal WTP for the reduction in the health deterioration rate h:

MWTPw
h ≡

∂Cwh
∂θh

= (1−w[1−q])w[1−p]U2(W−Cwh ,HB+θh)
RD[U1(W−Cw

h
,H)] > 0.

(11)

3.2 Relative value of interventions under probability weighting

Does probability weighting affect the relative value of one of the intervention channels over

another? We address this question by comparing the marginal value of improvements in the

three health dimensions. We do so by evaluating the WTP metrics (9–11) at the baseline

level (i.e., θ• = 0). Comparisons of the intervention-specific marginal WTP metrics are

summarized in the following three results.
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Result V. Reductions in q are more valuable than reductions in p iff:

MWTPw
q > MWTPw

p ↔
w′ [1− q]

(1− w [1− q])w′ [1− p] + w′ [1− q]w [1− p] > U(W,HB).

The LHS of the inequality is under very mild assumptions larger than one, so that even under

probability weighting prevention of cancer is more valuable than treatment. Yet the condition

is more demanding than under expected utility (Result II) as probability weighting increases

the denominator for common values of q, p, and any inverse S-shaped weighting function

w [.].

Result VI. Reductions in h are more valuable than reductions in p iff:

MWTPw
h > MWTPw

p ↔ w [1− p]U2(W,HB) > w′ [1− p]U(W,HB).

By substituting U(W,HB)/(1 − h) as the upper bound of U2(W,HB), we obtain h > 1 −
w[1−p]
w′[1−p] as a necessary condition for MWTPw

h > MWTPw
p . Likewise, if we substitute (1 −

U(W,HB))/h, we obtain the lower bound: w [1− p] /(hw′ [1− p]) > U(W,HB)/(1−U(W,HB)),

which is a sufficient condition for MWTPw
h > MWTPw

p . Comparison with Result III sug-

gests that for commonly observed p-values the condition is more demanding under probability

weighting (with an inverse-S shaped weighting function) than under linear probabilities; e.g.,

for the BP calibration we have that 1− p < w[1−p]
w′[1−p] ∀p > 0.24.

Result VII. Reductions in q are more valuable than reductions in h iff:

MWTPw
q > MWTPw

h ↔ 1− w [1− p]U(W,HB) > (1− w [1− q])w [1− p]
w′ [1− q] U2(W,HB).

Again, we may substitute U2(W,HB) by U(W,HB)/(1−h) and by (1−U(W,HB))/h, yielding

the following two sufficiency condition for MWTPw
q > MWTPw

h :

1− w [1− p]U(W,HB) > (1− w [1− q])w [1− p]
w′ [1− q]

U(W,HB)
1− h ,
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and

1− w [1− p]U(W,HB) > (1− w [1− q])w [1− p]
w′ [1− q]

(1− U(W,HB))
h

.

These conditions are met if either q is sufficiently small or p is sufficiently large or both.

Compared to Result IV, we find that under probability weighting (with an inverse-S shaped

weighting function) the criteria are more demanding than in the baseline model.

3.3 Probability-weighted vs baseline WTP metrics

What is the impact of probability weighting on the WTP metrics for different types of

intervention? To address this question, we compare Eqs. (9–11) to the baseline WTP metrics

(4–6). In doing so, we assume again that θ• = 0 and evaluate the WTP metrics at the initial

levels of q, p, and h. We compare the baseline to probability-weighted WTP metrics by

examining the following ratios:

µq ≡
MWTPw

q

MWTPq
= w′[1− q]1− w[1− p]U(W,HB)

1− (1− p)U(W,HB)
E[U1(W,H)]
RD[U1(W,H)] (12)

µp ≡
MWTPw

p

MWTPp
= (1− w[1− q])w′[1− p]

q

E[U1(W,H)]
RD[U1(W,H)] , and (13)

µh ≡
MWTPw

h

MWTPh
= (1− w[1− q])w[1− p]

q(1− p)
E[U1(W,H)]
RD[U1(W,H)] . (14)

Eqs. (12–14) are not very intuitive. In order to draw meaningful conclusions, we

calibrate the model using the BP calibration of the Prelec weighting function and prevailing

incidence and mortality rates for lung and skin cancer in the U.S. According to the latest

estimates of the U.S. National Cancer Institute about 6.6 percent of men and women will be

diagnosed with lung cancer at some point during their lifetime, of which 17.4 percent will
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Figure 1: WTP ratios for lung and skin cancer in the U.S.

Notes: Panels A-C display calibrations with current U.S. lung cancer rates; Panels D-F display calibrations
with current U.S. skin cancer rates; all calibrations are based on Bleichrodt and Pinto (2006). Code for
replicating the calibrations is provided in Appendix C.

survive five years or more after the diagnosis.6 Based on these statistics we set q = 0.066 and

p = 0.826. Moreover, we normalize the utility functions so that U(W,HG) = 1, U(W,HB) =

1− h, U(W,HD) = 0. We vary the health deterioration rate h for lung-cancer survivors from

[0, 1], although both extremes might be somewhat unrealistic.

Panels A-C of Figure 1 show the three WTP ratios, µq, µp and µh, calibrated to U.S.

lung-cancer incidence and mortality rates. Across the range of possible h-values the ratios

are well above unity, implying that probability weighting with the BP calibration leads
6See http://www.seer.cancer.gov/statfacts.
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to up to five times higher WTP values than those derived under the baseline model. In

Panels D-F of Figure 1, the same WTP ratios are displayed for current U.S. skin-cancer

(melanoma) incidence and mortality rates, which imply p = 0.085, q = 0.021.7 Although the

survival prospects are much better for skin-cancer patients, probability weighting with the

BP calibration leads to up to ten times higher WTP values than those derived under the

baseline model. This motivates our last result.

Result VIII. Under a weighting function w[.] that overweights small probabilities and un-

derweights large ones, probability weighting increases the WTP for interventions that improve

any of the three health dimensions:

MWTPq < MWTPw
q , MWTPp < MWTPw

p , and MWTPh < MWTPw
h .

4 Conclusion

We have extended the standard VSL model to analyze the economic value of interventions

that reduce either the incidence rate, the conditional mortality rate, or the health deteriora-

tion rate of severe diseases such as cancer. The valuation model we propose suggests that for

commonly observed incidence and mortality rates, social investment into cancer prevention

should have priority over investment into the development of new drugs and other treatments.

In other words, reducing the chance to suffer from cancer is more desirable than improving

survival chances. This is not to say that improvements in cancer treatment and detection

methods are worthless, however. Gains in longevity and quality of life are, of course, valuable

to cancer patients (Lakdawalla et al. 2010).

Many people overweight small probabilities such as those implied by cancer incidence

rates, but underweight large probabilities such as those implied by the corresponding mortal-

ity rates. We have therefore employed the RDU framework to explore non-linear probability
7Most skin cancer is nonmelanoma, which has very high incidence and very low mortality.
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weighting in health valuations related to severe diseases.8 We find that the WTP for re-

ductions in any of the three rates—incidence, mortality, and health detoriation—are several

times larger than under the linear-in-probabilities assumption of the EU framework. This

further supports the qualitative findings of the baseline model; even if people do not evaluate

health risks using linear probabilities, prevention is more valuable than treatment.

8An upshot of the comparison between EU-based and RDU-based WTP metrics is that the same technique
can be applied to study other factors that might enter the decision maker’s probabilistic reasoning. In
Appendix B, we apply the approach to assess how comorbidity risks affect the relative valuation of the
different intervention channels. Other applications are conceivable.
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Appendix A—Detailed Derivations

Derivation of Result II. We insert Eqs. (4–5) and evaluate them at θ• = 0 to obtain the

equivalence relationship:

MWTPq > MWTPp ↔
U(W,HG)− [(1− p)U(W,HB) + pU(W,HD)]

E[U1(W,H)] >
q [U(W,HB)− U(W,HD)]

E[U1(W,H)] .

The RHS can be transformed to:

U(W,HG)− U(W,HB)
U(W,HB)− U(W,HD) > q − p,

and, assuming U(W,HG) = 1 and U(W,HD) = 0, we obtain Result II.

Derivation of Result III. We insert Eqs. (5–6) and evaluate them at θ• = 0 to obtain the

equivalence relationship:

MWTPh > MWTPp ↔
q(1− p)U2(W,HB)

E[U1(W,H)] >
q [U(W,HB)− U(W,HD)]

E[U1(W,H)] .

The RHS can be transformed to:

(1− p)U2(W,HB) > U(W,HB)− U(W,HD).

Next, we assume U(W,HD) = 0 and replace U2(W,HB) by the upper bound U(W,HB)/HB =

U(W,HB)/(1− h) derived in Section 2.1:

(1− p)U(W,HB)/(1− h) > U(W,HB),

based on which we obtain h > p as a necessary condition for MWTPh > MWTPp.

If we instead substitute U2(W,HB) by the lower bound (1 − U(W,HB))/(1 − HB) =
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(1− U(W,HB))/h, we obtain:

(1− p)(1− U(W,HB))/h > U(W,HB),

which yields the sufficiency condition for Result III.

Derivation of Result IV. We insert Eqs. (4) and (6) and evaluate them at θ• = 0 to obtain

the equivalence relationship:

MWTPq > MWTPh ↔
U(W,HG)− [(1− p)U(W,HB) + pU(W,HD)]

E[U1(W,H)] >
q(1− p)U2(W,HB)

E[U1(W,H)] .

The RHS can be transformed to:

U(W,HG)− (1− p)U(W,HB)− pU(W,HD) > q(1− p)U2(W,HB).

Next, we assume U(W,HG) = 1 and U(W,HD) = 0 and replace U2(W,HB) by the upper

bound U(W,HB)/(1− h) derived in Section 2.1 to obtain:

1− (1− p)U(W,HB) > q(1− p)U(W,HB)/(1− h),

which is the first sufficiency condition for MWTPq > MWTPh. Substituting the lower

bound (1− U(W,HB))/h instead, yields the second sufficiency condition for Result IV:

1− (1− p)U(W,HB) > q(1− p)(1− U(W,HB))/h.

Derivation of Result V. We insert Eqs. (9–10) and evaluate them at θ• = 0 to obtain the

equivalence relationship:

MWTPw
q > MWTPw

p ↔
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w′[1−q]{U(W,HG)−w[1−p]U(W,HB)−(1−w[1−p])U(W,HD)}

RD[U1(W,H)]
>

(1−w[1−q])w′[1−p]{U(W,HB)−U(W,HD)}

RD[U1(W,H)]
.

The RHS can be transformed to:

w′[1−q]{U(W,HG)−w[1−p]U(W,HB)−(1−w[1−p])U(W,HD)} > (1−w[1−q])w′[1−p]{U(W,HB)−U(W,HD)}.

Assuming U(W,HG) = 1 and U(W,HD) = 0, this expression simplifies to Result V:

w′ [1− q] {1− w [1− p]U(W,HB)} > (1− w [1− q])w′ [1− p]U(W,HB) =

w′ [1− q] > U(W,HB) {(1− w [1− q])w′ [1− p] + w′ [1− q]w [1− p]} =
w′[1−q]

(1−w[1−q])w′[1−p]+w′[1−q]w[1−p] > U(W,HB).

Derivation of Result VI. We insert Eqs. (10–11) and evaluate them at θ• = 0 to obtain the

equivalence relationship:

MWTPw
h > MWTPw

p ↔

(1− w [1− q])w [1− p]U2(W,HB)
RD[U1(W,H)] >

(1− w [1− q])w′ [1− p] {U(W,HB)− U(W,HD)}
RD[U1(W,H)] .

The RHS equals:

(1− w [1− q])w [1− p]U2(W,HB) > (1− w [1− q])w′ [1− p] {U(W,HB)− U(W,HD)} .

Next, we assume U(W,HD) = 0 and replace U2(W,HB) by the upper bound U(W,HB)/(1−h)

derived in Section 2.1:

(1− w [1− q])w [1− p]U(W,HB)/(1− h) > (1− w [1− q])w′ [1− p]U(W,HB) =

1− w[1−p]
w′[1−p] < h,
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yielding the necessary condition for Result VI.

If we instead substitute U2(W,HB) by the lower bound (1− U(W,HB))/h, we obtain:

(1− w [1− q])w [1− p] (1− U(W,HB))/h > (1− w [1− q])w′ [1− p]U(W,HB) =
w[1−p]
w′[1−p]h >

U(W,HB)
1−U(W,HB) ,

which yields the sufficiency condition for Result VI.

Derivation of Result VII.We insert Eqs. (9) and (11) and evaluate them at θ• = 0 to obtain

the equivalence relationship:

MWTPw
q > MWTPw

h ↔

w′[1−q]{U(W,HG)−w[1−p]U(W,HB)−(1−w[1−p])U(W,HD)}

RD[U1(W,H)]
>

(1−w[1−q])w[1−p]U2(W,HB)

RD[U1(W,H)]
.

The RHS equals:

w′[1−q]{U(W,HG)−w[1−p]U(W,HB)−(1−w[1−p])U(W,HD)} > (1−w[1−q])w[1−p]U2(W,HB).

Next, we assume U(W,HG) = 1 and U(W,HD) = 0 and replace U2(W,HB) by the upper

bound U(W,HB)/(1− h) and the lower bound (1− U(W,HB))/h, respectively:14

w′[1−q]{1−w[1−p]U(W,HB)} > (1−w[1−q])w[1−p]U(W,HB)/(1−h) =

1−w[1−p]U(W,HB) > (1−w[1−q])w[1−p]
w′[1−q]

U(W,HB)
1−h .

and
w′[1−q]{1−w[1−p]U(W,HB)} > (1−w[1−q])w[1−p](1−U(W,HB))/h =

1−w[1−p]U(W,HB) > (1−w[1−q])w[1−p]
w′[1−q]

1−U(W,HB)
h

.

These are the sufficiency conditions for Result VII.
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Appendix B—Comorbidity risks and WTP

Assume that the individual faces a comorbidity (Bleichrodt et al. 2003; Liu 2004) or other

competing background risk (Eeckhoudt and Hammitt 2001). We introduce a mortality back-

ground risk π, which can be interpreted either as a specific competing disease or as the

compound risk of dying from any other cause than the target disease.

Consider the extended form of expected utility:

E[Uπ(W,H)] = (1− π)(1− q)U(W,HG) + (15)

q[(1− π)(1− p)U(W,HB) + (1− (1− π)(1− p))U(W,HD)].

We derive WTP metrics for improvements in q, p, and h similarly to those in Section 2. In

particular, we re-write Eq. (15) as

E[Uπ(W,H)] = (1− π)(1− q + θq)U(W − Cπq , HG) + (16)

(q − θq)[(1− π)(1− p)U(W − Cπq , HB) + (1− (1− π)(1− p))U(W − Cπq , HD)],

where Cπ
q = C(W,H, θq, p, q, π) denotes the compensating variation for a reduction in the

incidence rate q of the target disease by the amount θq in the presence of the background

risk π. The corresponding marginal WTP is:

MWTPπq ≡
∂Cπq
∂θq

= (1−π)U(W−Cπq ,HG)−[(1−π)(1−p)U(W−Cπq ,HB)+(1−(1−π)(1−p))U(W−Cπq ,HD)]

E[Uπ1 (W − Cπq , H)] > 0. (17)

In the same way, we obtain the marginal WTP for the reduction in the disease-specific

mortality rate p:

MWTPπp ≡
∂Cπp
∂θp

=
q(1− π)

[
U(W − Cπp , HB)− U(W − Cπp , HD)

]
E[Uπ1 (W − Cπp , H)] > 0, (18)
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and the marginal WTP for the reduction in the health deterioration rate h:

MWTPπh ≡
∂Cπh
∂θh

= q(1− π)(1− p)U2(W − Ch, HB + θh)
E[Uπ1 (W − Cπh , H)] > 0. (19)

Next, we compare Eqs. (17–19) to the baseline WTP metrics given by Eqs. (4–6). We

assume θ• = 0 and evaluate the ratios of the corresponding WTP metrics at the baseline

levels of q, p, and h:

MWTPq
MWTP π

q

= U(W,HG)−[(1−p)U(W,HS)+pU(W,HD)]
(1−π)U(W,HG)−[(1−π)(1−p)US+(1−(1−π)(1−p))UD]

(1−π)(1−q) ∂U0
∂W

+q[(1−π)(1−p) ∂US
∂W

+(1−(1−π)(1−p)) ∂UD
∂W

]

(1−q) ∂U0
∂W

+q[(1−p) ∂US
∂W

+p ∂UD
∂W

]
=

B−pUD
B− (1−(1−π)(1−p))

(1−π) UD

A+q (1−(1−π)(1−p))
(1−π)

∂UD
∂W

A+qp ∂UD
∂W

> 1.

MWTPp
MWTP π

p

=
(1−q) ∂U0

∂W
+q[(1−p) ∂US

∂W
+ (1−(1−π)(1−p))

(1−π)
∂UD
∂W

]

(1−q) ∂U0
∂W

+q[(1−p) ∂US
∂W

+p ∂UD
∂W

]
=

A+q (1−(1−π)(1−p))
(1−π)

∂UD
∂W

A+qp ∂UD
∂W

> 1.

MWTPh
MWTP π

h

=
(1−q) ∂U0

∂W
+q[(1−p) ∂US

∂W
+ (1−(1−π)(1−p))

(1−π)
∂UD
∂W

]

(1−q) ∂U0
∂W

+q[(1−p) ∂US
∂W

+p ∂UD
∂W

]
=

A+q (1−(1−π)(1−p))
(1−π)

∂UD
∂W

A+qp ∂UD
∂W

> 1.

The findings are summarized in the following result.

Result IX. As long as the individual derives marginal utility from leaving a larger bequest

to others, a physical background risk reduces the demand value for improvements in all three

health dimensions:

MWTPq ≥MWTP π
q , MWTPp ≥MWTP π

p , and MWTPh ≥MWTP π
h .

Similarly to the original why-bother effect (Eeckhoudt and Hammitt 2001), the inequalities

become strict if the marginal utility of a bequest is larger than zero.
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Appendix C—Code for Replication

The following R code enables replication of Figure 1.

##parametrization based on Bleichrodt and Pinto (2006)

alpha=0.534;beta=1.083

h=seq(0:99)/100;u=1;v=1-h

##Lung cancer calibration, data retrieved from http://seer.cancer.gov/statfacts/html/lungb.html

q=0.066;Q=1-q;p=1-0.174;P=1-p

w_Q=exp(-beta*(-log(Q))^alpha) #weighting function for incidence risk

dw_Q=beta*alpha*(-log(Q))^(alpha-1)*w_Q/Q #marginal weighting function for incidence risk

w_P=exp(-beta*(-log(P))^alpha) #weighting function for mortality risk

dw_P=beta*alpha*(-log(P))^(alpha-1)*w_P/P #marginal weighting function for mortality risk

##Eq. (12) split up in parts

rq_1=dw_Q;rq_2=(u-w_P*v)/(u-P*v);rq_3=(Q*u+(1-Q)*P*v)/(w_Q*u+(1-w_Q)*w_P*v);rq=rq_1*rq_2*rq_3

##Panel A of Figure 1

par(mfrow=c(2,3)) #graphic setting

plot(h,rq,main="A - reduction in lung cancer incidence",lwd=2,type="l",cex.main=.95,

xlab="Health detoriation rate (h)",ylab=expression("MWTP ratio"~mu[q]))

##Eq. (13) split up in parts

rp_1=((1-w_Q)*dw_P)/q;rp_2=(Q*u+(1-Q)*P*v)/(w_Q*u+(1-w_Q)*w_P*v);rp=rp_1*rp_2

##Panel B of Figure 1

plot(h,rp,main="B - reduction in lung cancer mortality",lwd=2,type="l",cex.main=.95,

xlab="Health detoriation rate (h)",ylab=expression("MWTP ratio"~mu[p]))

##Eq. (14) split up in parts

rh_1=((1-w_Q)*w_P)/(q*P);rh_2=(Q*u+(1-Q)*P*v)/(w_Q*u+(1-w_Q)*w_P*v);rh=rh_1*rh_2

##Panel C of Figure 1

plot(h,rh,main="C - reduction in lung-cancer caused health deterioration", lwd=2,type="l",

cex.main=.95,xlab="Health detoriation rate (h)",ylab=expression("MWTP ratio"~mu[h]))
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##Skin cancer calibration, data retrieved from http://seer.cancer.gov/statfacts/html/melan.html

q=0.021;Q=1-q; p=1-.915;P=1-p

w_Q=exp(-beta*(-log(Q))^alpha) #weighting function for incidence risk

dw_Q=beta*alpha*(-log(Q))^(alpha-1)*w_Q/Q #marginal weighting function for incidence risk

w_P=exp(-beta*(-log(P))^alpha) #weighting function for mortality risk

dw_P=beta*alpha*(-log(P))^(alpha-1)*w_P/P #marginal weighting function for mortality risk

##Eq. (12) split up in parts

rq_1=dw_Q;rq_2=(u-w_P*v)/(u-P*v);rq_3=(Q*u+(1-Q)*P*v)/(w_Q*u+(1-w_Q)*w_P*v);rq=rq_1*rq_2*rq_3

##Panel D of Figure 1

plot(h,rq,main="D - reduction in skin cancer incidence",lwd=2,type="l",cex.main=.95,

xlab="Health detoriation rate (h)",ylab=expression("MWTP ratio" ~ mu[q]))

##Eq. (13) split up in parts

rp_1=((1-w_Q)*dw_P)/q;rp_2=(Q*u+(1-Q)*P*v)/(w_Q*u+(1-w_Q)*w_P*v);rp=rp_1*rp_2

##Panel E of Figure 1

plot(h,rp,main="E - reduction in skin cancer mortality",lwd=2,type="l",

cex.main=.95,xlab="Health detoriation rate (h)",ylab=expression("MWTP ratio"~mu[p]))

##Eq. (14) split up in parts

rh_1=((1-w_Q)*w_P)/(q*P);rh_2=(Q*u+(1-Q)*P*v)/(w_Q*u+(1-w_Q)*w_P*v);rh=rh_1*rh_2

##Panel F of Figure 1

plot(h,rh,main="F - reduction in skin-cancer caused health deterioration", lwd=2,type="l",

cex.main=.95,xlab="Health detoriation rate (h)",ylab=expression("MWTP ratio"~mu[h]))
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