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Abstract

We address the non-cooperative exploitation of a migratory renewable resource in the
presence of possible regime shift affecting the spatial movement of the resource. At
an unknown date in the future, environmental conditions may abruptly and irreversibly
shift, thus altering the spatial movement patterns of the resource. We design a stochastic
spatial bioeconomic model to address the effects of these types of shifts on non-cooperative
harvest decisions made by decentralized owners. We find that the threat of a future
shift modifies the standard golden rule and may induce larger harvest rate everywhere,
irrespective of the initial stock and whether the owner will be advantaged or disadvantaged
by the shift. We also identify conditions under which the threat of regime shift induces
owners to reduce harvest rates in advance of the threat. Our theoretical results are
illustrated with a numerical example.

Keywords: Regime shift; spatial management; renewable resources; property rights

JEL Classification Codes: C73; H23; H73; Q22

1 Introduction

Because renewable resources such as fish, water, game, and invasive species are mobile,

extraction and productivity in one location affect economic opportunities in other locations.
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The resulting spatial externality can be dealt with using a number of instruments including

spatial taxes (Sanchirico and Wilen 2005), limits of extractive effort, or other means. But

in practice, many spatially connected renewable resources are managed via private property

rights where autonomous entities (such as countries, villages, cooperatives or individual

property right owners) choose their own extraction rates, taking as given the mobility of the

resource and the extraction of their competitors. Indeed spatial property rights are implicitly

the default approach for managing many renewable resources,1 despite their potential for

inducing spatial externalities driven by resource mobility. This general problem has become

a canonical model in spatial resource economics. The main finding from that literature is

that non-cooperative extraction will necessarily entail over-extraction (relative to a social

optimum) because no single owner is incentivized to account for the effects of her extraction

on others (Kaffine and Costello 2011). The aggregate effects of this non-cooperation can

range from extremely deleterious (see White and Costello (2014)) to practically insignificant

(see Gisser and Sanchez (1980)).

This interesting and growing literature has evolved in a deterministic setting in which

productivity and dispersal functions are common knowledge and fixed over time. Rather,

a growing scientific literature suggests that global change may induce regime shifts that

affect resource dynamics, and thus may alter economic incentives and returns. While there

are many types of documented (and speculated) regime shifts, they generally share three

common features. First, regime shifts tend to be abrupt - over a relatively short period

of time they can shift the state of the world from one state to another state. Second, the

occurrence date of a regime shift is probabilistic - while scientists might have a sense of the

likelihood of a regime shift occurring, we do not know with certainty when it will occur.

Third, many regime shifts are thought to be irreversible - once the shift occurs, the state

1For example, migratory waterfowl and fish are managed by the multiple countries whose boundaries
they traverse, groundwater is managed by overlying landowners, game is often managed by private wildlife
management areas or hunting clubs, and invasive species are controlled by adjacent landowners.
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will never return to its pre-shift state.

While regime shifts are natural world phenomena, they can fundamentally alter the

constraints and incentives faced by property owners who extract mobile renewable resources.

For example, one of the most commonly cited forms of regime shift concerns the spatial range

or dispersal of organisms. Consider a migratory fish species such as tuna. Under pre-shift

parameters, suppose tuna tend to migrate equally between countries A and B. But if a

regime shift were to occur, the migratory pattern may shift to favor country A. If that

kind of shift were predictable, it would clearly alter the incentives of countries A and B:

Recognizing the improvement in future conditions, country A might be willing to forego

harvest today to build resource stocks and capitalize on improved future conditions.2 And

recognizing the deterioration of future conditions, country B would, intuitively, increase its

current extraction. But these simple and intuitive predictions turn out to be vulnerable

to strategic interactions across players. This stylized example illustrates our key inquiry:

How will the presence of a possible future regime shift alter strategic interactions of private

property owners who extract a mobile natural resource? Will the threat of regime shift

always entail a loss of precaution by one agent and an increase in precaution by the other?

To our knowledge these, and related questions have not been addressed; we will do so here.

This paper builds on an emerging literature on fisheries that addresses related questions,

but in a context where the random occurrence of a regime shift inflicts a permanent loss

to all harvesters. Polasky et al. (2011) and Ren and Polasky (2014) focus on the optimal

management whereas Fesselmeyer and Santugini (2013), Sakamoto (2014), and Miller and

Nkuiya (2015) analyze the strategic management of a common pool resource. These contributions

consider only scenarios in which all harvesters are identical and do not explicitly take

into account the spatial movement of the resource. In contrast, our analysis investigates

2See Costello et al. (2001) and Carson et al. (2009) for aspatial models of resource management with
environmental predictions.
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cases in which regime shift will alter the distribution of resource stocks so as to create

winners and losers.3 We thus explicitly take into account the spatial movement of the

resource and consider heterogenous harvesters subject to different, but connected, economic,

environmental, and biological conditions.

The paper unfolds as follows. Section 2 presents the model. Section 3 focuses on the case

where the occurrence of regime shift is perfectly predictable. Section 4 analyses harvesters’

response to uncertainty about regime shift. Section 5 provides an illustrative example in

support to analytical results obtained in Section 4. Section 6 concludes.

2 The model

A renewable resource stock is distributed heterogeneously across an ecosystem consisting

of two patches A and B. Patches may differ in shape, size, environmental, and economic

characteristics; for example, patches may be countries, private lands, or communal harvesting

areas. The time index is denoted by t = 1, 2, 3, .... and hjt represents the extraction (harvest)

in patch j during period t. The resource stock at the beginning of period t in a given patch

j is denoted by xjt while the remaining residual stock (or “escapement”) ejt is defined as

ejt ≡ xjt − hjt, which is the post-harvest stock at the end of period t. As such, when there

is no harvest, say, in patch j, the current escapement is equal to the current resource stock:

ejt = xjt.

Resource mobility will induce a spatial connection across patches. In period t, a fraction

Kijt of patch i’s resource stock moves to patch j, i 6= j while the fraction Kiit stays within

patch i. Therefore, Kijt + Kiit ≤ 1 for i, j ∈ {A,B} with i 6= j. In the case where this

inequality is not binding, a fraction of the resource population living in patch i moves out

of the system at date t. The current resource distribution across patches is determined by

3For example, climate change may irreversibly trigger local scarcity or extinction in the sub-polar regions
and invasion in the arctic for many species of fish (Cheung et al. 2009).

4



the 2× 2 dispersal matrix Kt, whose element Kijt is a binomial random variable that either

takes the value Dij (before the shift), or Ds
ij (after the shift).

A B

BA

Before the shift

After the shift

DAA DBB

Ds
BBDs

AA

Figure 1: Effects of the shift on the migration pattern.

At the beginning of the initial period, dispersal is in its pre-shift form, so Kij0 = Dij.

Regime shift occurs at an unknown future date denoted by τ (that may be infinite), and

dispersal irreversibly shifts to regime s, characterized by a dispersal matrix with terms Ds
ij.

We assume that the shift will give a bio-physical advantage to region A and a disadvantage

to region B, so Ds
BA > DBA ≥ 0, DBB > Ds

BB ≥ 0, DAB > Ds
AB ≥ 0, and Ds

AA > DAA ≥ 0.

Figure 1 illustrates the pre-shift (top panel) and post-shift (bottom panel) migration patterns

where the arrow thickness and size of the patches loosely indicate the strength of connectivity.

Dispersal is thus characterized as follows:
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Kijt =


Dij for t < τ,

Ds
ij for t ≥ τ for i, j = A,B.

The regime shift process described above can be represented by the stochastic process `t

that may either take the values I (for “initial”) or S (for “shift”) with transition probabilities

P (`t+1 = S|`t = S) = 1; P (`t+1 = S|`t = I) = λ, (1)

P (`t+1 = I|`t = I) = 1− λ. (2)

At the outset of the initial period, the resource stocks xA0 and xB0 in patches A and B

are perfectly known. In the absence of harvest, the resource stock grows according to the

growth and dispersal equation

xjt+1 =
∑
i=A,B

gi(xit)Kijt, j = A,B, (3)

where gi(.) represents patch i’s growth function that satisfies standard conditions. It is

increasing, concave and twice continuously differentiable.

In the presence of harvest, growth depends on escapement, so the law of motion 3 becomes

xjt+1 =
∑
i=A,B

gi(eit)Kijt, j = A,B. (4)

The evolution of the resource population is stochastically determined by harvest, growth,

and environmental conditions Kijt. The timing is thus: the present period stock (xjt) is

observed and then harvested (hjt) giving residual stock (ejt), which then grows (gj(ejt)), and

disperses across the system (Kjit).

Suppose now that each patch is owned by a single entity. For example, this could be a
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set of spatially-connected Territorial User Right Fisheries (TURFs), a set of farms on which

bees reside, or a set of countries between which birds, game, or fish migrate. We allow for

prices and costs to be patch specific, so the instantaneous profit associated with patch j is

given by

πjt = pj(xjt − ejt)−
∫ xjt

ejt

cj(v)dv, (5)

where pj denotes the unit price. The integral in Equation 5 represents the total cost function,

which can also be patch specific. We assume that c′j(v) ≤ 0, that is, the marginal cost

decreases in the resource stock level. The rationale is that at a given date, a larger resource

stock entails a smaller unit harvest cost. In the case where c′j(.) = 0, the profit in patch j

is linear in harvest; profit is strictly concave in harvest as long as c′j(.) < 0. To determine

whether or not the marginal cost is constant is an empirical issue (see for instance, Atewamba

and Nkuiya (2015), for the case of non-renewable resources). We separately examine both

cases below.

At date t = 0, 1, ..., τ − 1, the payoff function for player j = A,B is given by

τ−1∑
k=t

δ(k−t)

[
pj(xjk − ejk)−

∫ xjk

ejk

cj(v)dv

]
+ δτ−tWj(x(τ)),

where Wj(x(τ)) represents the period-τ continuation value of the problem for player j and δ

is the discount factor. We next solve the post-shift problem and use its result to derive the

complete solution for the regime shift problem presented above.

3 The post-shift problem

In this section we examine the game between spatial property rights holders that will occur

following the regime shift. We follow the growing literature, starting with the seminal paper
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of Reed (1979), that uses escapement as the control variable.4 In this setting, harvester j

chooses an escapement strategy to maximize her present discounted profits taking as given

the escapement strategy of her rival. Thus, immediately following the regime shift, harvester

j solves:

Wj(xτ ) = max
ejs,s≥τ

+∞∑
k=τ

δ(k−τ)[pj(xjk − ejk)−
∫ xjk

ejk

cj(v)dv],

subject to (4) with xτ ≡ (xAτ , xBτ ) given.

We seek a Markov Perfect Nash Equilibrium (MPNE), which will define the equilibrium

harvest decisions of both players following the regime shift. The escapement decision rule

(eA(xA, xB), eB(xA, xB)) is a MPNE if given the resource stock at the outset of period τ

(xτ ≡ (xAτ , xBτ )), at any date t ≥ τ , {ej(xAs, xBs), s ≥ t} is a solution to the optimization

problem above. The feedback Nash equilibrium is a MPNE and can be found by specifying

and manipulating the Bellman Equations for the two players. Player j’s Bellman equation

is:

Wj(xt) = max
ejt

{
pj(xjt − ejt)−

∫ xjt

ejt

cj(v)dv + δWj(xt+1)

}
,

which is subject to (4) with the initial resource stock xτ ≡ (xAτ , xBτ ) given. The first-order

conditions require

pj = cj(ejt) + δ
∑
i=A,B

∂Wj

∂xit+1

(xt+1)g
′
j(ejt)D

s
ji, j = A,B. (6)

This equation states that harvester j chooses her escapement level to equate the resource

price with its augmented marginal cost, which is the marginal cost, augmented by the value

forgone by harvesting today rather than keeping the resource for future harvests. The

challenge is that the form of the value function Wj(x) is unknown. However, its properties

4This is a benign assumption because harvest and escapement are linked by the identity ht ≡ xt − et.
This approach has subsequently been adopted by numerous authors including Costello and Polasky (2008),
?, Kapaun and Quaas (2013), and many papers cited therein.
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can be derived given the structure of this problem. These derivations allow us to characterize

the equilibrium over the post regime shift phase, summarized as follows:

Lemma 1. Over the post regime shift phase, the following results hold.

(i) Patch j is harvested down to the escapement level ej, which is stock independent and is

solution to

pj − cj(ej) = δDs
jj[pj − cj(gj(ej)Ds

jj + gi(ei)D
s
ij)]g

′
j(ej), i = A,B and i 6= j. (7)

(ii) Each patch’s equilibrium resource stock reaches its steady state in one period, and is

thereafter time-independent.

Proof. All proofs reside in the appendix.

Equation 7 implicitly defines harvester j’s best response function ej(ei) and suggests that

player j’s actions depend on the flow of the resource to her own patch (Ds
ij), but that ej(ei)

does not depend on Ds
ji nor Ds

ii, i 6= j, which are terms defining the resource flow to the other

patch. This is the case because harvester j does not ascribe any value to additional resource

stock located out of its boundaries (i.e.
∂Wj

∂xit
(xt) = 0 for i 6= j) because she knows that the best

response of her rival would be to harvest any additional stock. The equilibrium escapement

level corresponds to the intersection of best response functions eA(eB) and eB(eA). We can

also employ this analysis to identify the equilibrium escapement level of the no-shift case,

in which the resource distribution is deterministic and never shifts. We denote the no-shift

variables by (ẽjt). They can be retrieved from Condition 7 by replacing (for i, j = A,B) Ds
ij

by Dij and (xAτ , xBτ ) by (xA0, xB0). Because the no-shift case takes the same form as the

post shift case (albeit with different parameter values), the equilibrium escapement level of

the no-shift case is also time and stock independent. The equilibrium resource stock outcome

of the no-shift case converges to its steady state in the second period of the game.
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To better understand the effects of the shift, we next compare the outcomes of the post

regime shift case and the no-shift case.

Proposition 1. Assume that marginal costs are constant (i.e., c′j(x) = 0 for all x, j = A,B).

Over the post regime shift phase, the following results hold.

(i) For j = A,B, ej is implicitly defined by:

g′j(ej) =
1

δDs
jj

. (8)

(ii) Relative to the no-shift case, the equilibrium escapement level in the post regime shift

problem is larger in patch A and smaller in patch B: eBt ≤ ẽBt and eAt ≥ ẽAt for all t ≥ τ .

(iii) At any date t ≥ τ + 1, the equilibrium resource stock (xjt) in patch j is greater relative

to the no-shift case (x̃jt) if and only if Ds
ij > D̄s

jx.

(iv) At any date t ≥ τ + 1, the equilibrium harvest rate (hjt) in patch j is larger relative to

the no-shift case (h̃jt) if and only if Ds
ij > D̄s

jh, where D̄s
jx and D̄s

jh depend only on δ, Ds
jj,

Djj and Dij, j = A,B and are given in the appendix.

Result (i) of Proposition 1 suggests that harvester j = A,B chooses her escapement level to

equate the biological return of the resource discounted by the patch retention rate (Ds
jj) and

the financial rate of return. This is a non-cooperative “golden rule” for spatial growth models

(Kaffine and Costello 2011), where Djj acts like an additional discount factor. Result (ii) of

Proposition 1 is driven by the facts that (a) in each patch, the equilibrium escapement level

and the patch retention rate are positively related; (b) patch B’s retention rate decreases

with the shift whereas this result is reversed for patch A. Results (iii) and (iv) of Proposition

1 lead to an unexpected outcome. Despite the fact that the shift inflicts biophysical damages

to patch B (i.e., Ds
AB < DAB and Ds

BB < DBB), the resource stock in patch B may be larger

depending on the resource growth and spatial characteristics. In addition, harvester B may

have incentives to increase her harvest compared to the no-shift case.
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We have so far addressed the cases where the shift has already occurred and where the

shift will never occur. We next use these results to completely characterize the equilibrium

in the pre-shift phase of the game.

4 The uncertainty case

We have focused on analyzing the deterministic spatial game induced either following an

irreversible regime shift or in the complete absence of regime shift. But our central research

question asks how players interact under the threat of a possible regime shift in the future. In

this section, we focus on harvesters’ responses to uncertainty about a possible future regime

shift. Taking the escapement strategy of the other player as given, harvester j = A,B

chooses the escapement strategy that maximizes her expected present discounted net profits

Vj(xt) = max
ejt

E
+∞∑
k=t

δ(k−t)[pj(xjk − ejk)−
∫ xjk

ejk

cj(v)dv], (9)

which is subject to (4). We are interested in identifying a MPNE that we next derive using

the feedback Nash equilibrium approach. Player j’s value function given in (9) is:

Vj(xt) = max
ejt

[pj(xjt − ejt)−
∫ xjt

ejt

cj(v)dv + δ(1− λ)Vj(xt+1) + δλWj(x
s
t+1)], (10)

subject to (4), where xsjt+1 = gj(ej)D
s
jj + gi(ei)D

s
ij and xjt+1 = gj(ej)Djj + gi(ei)Dij. The

first two terms on the right hand side of Equation 10 are just contemporaneous revenue and

cost from harvesting the resource in patch j. The third term is the discounted expected

value in the case where the regime shift does not occur at the end of period t (this occurs

with probability (1− λ)). The final term is the discounted expected value in the case where

regime shift does occur at the end of period t, in which case we invoke the value functions

from the post regime shift problem derived in Section 3 (this occurs with probability λ).
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To interpret Equation 10, it is instructive to rewrite it as follows:

Vj(xt) = max
ejt

[pj(xjt − ejt)−
∫ xjt

ejt

cj(v)dv + δ̃jVj(xt+1)], (11)

where δ̃j = δ + δλ[Wj(xt+1) − Vj(xt+1)]/Vj(xt+1) can be thought of as a risk-adjusted

discount factor. Equation 11 can be interpreted as the Bellman equation associated with a

deterministic model in which the discount rate endogenously accounts for the possibility of

regime shift.

The first-order condition for this maximization problem can be written as

pj = cj(ejt)+δλge(ejt, αj)
∑
i=A,B

∂Wj

∂xit+1

(xst+1)D
s
ji+δ(1−λ)ge(ejt, αj)

∑
i=A,B

∂Vj
∂xit+1

(xt+1)Dji, j = A,B.

Since xAt+1, xBt+1, x
s
At+1 and xsBt+1 depend on eAt, eBt and do not explicitly depend on xAt

and xBt, this optimality condition suggests that eAt and eBt are time and stock independent.

This intuition is verified in the following lemma.

Lemma 2. Prior to the spatial regime shift, the following results hold:

(i) The pair (eA, eB) constitutes a MPNE, where ej is implicitly defined as follows:

pj − cj(ej) = δλDs
jj[pj − cj(gj(ej)Ds

jj + gi(ei)D
s
ij)]g

′
j(ej) (12)

+ δ(1− λ)Djj[pj − cj(gj(ej)Djj + gi(ei)Dij)]g
′
j(ej), i 6= j.

(ii) ej is stock and time independent.

(iii) A given patch equilibrium resource stock is time dependent and reaches its steady state

in the second period.

Lemma 2 suggests that the MPNE in escapement has a simple structure that depends on

spatial characteristics, but is state independent. As such, the equilibrium escapement level in
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patch j is simply ej as defined in (12). In contrast to results obtained in Lemma 1, Equation

12 suggests that the escapement level in a patch depends on the probability of regime shift,

the patch’s self retention rate before and after the shift. Moreover, in (12), terms multiplying

λ capture harvester j’s strategic responses to the threat of regime shift. Interestingly, for

the particular case where λ = 0, (12) characterizes the equilibrium escapement levels for the

no-shift case. The outcome of Lemma 2 allows us to derive the following results.

Proposition 2. Assume that marginal costs are constant (i.e., c′j(x) = 0 for all x, j = A,B).

Over the pre-regime shift phase, the following results hold:

(i) The equilibrium escapement level in patch j = A,B, satisfies

g′j(ej) =
1

δ(λDs
jj + (1− λ)Djj)

. (13)

(ii) The equilibrium escapement level in
(

Patch A
Patch B

)
is
(

increasing
decreasing

)
in the likelihood of the shift:

∂eA
∂λ

> 0 and
∂eB
∂λ

< 0. (14)

Result (i) reveals that harvester j chooses her escapement to equate the financial rate of

return with the expected biological return, which is biological growth g′j(ej), discounted by

patch j’s expected retention rate λDs
jj + (1 − λ)Djj. In other words, the non-cooperative

golden rule (13) obtained in the certainty case is modified in response to the threat of future

spatial regime shift. As the probability of the shift is raised, anticipating the shift, player A

adjusts her harvest decisions to increase escapement (to take advantage of improved future

conditions), while player B reduces her escapement in response to the threat (to extract

the resource before it shifts migration out of her region). Since the no-shift outcome is the

special case where λ = 0, result (ii) of Proposition 2 implies that over the pre-regime shift

phase, the equilibrium escapement level is lower in patch B and larger in patch A, compared

to the no-shift levels.
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These results provide a new perspective on the literature using escapement strategies as

control variable to address the management of a renewable resource. For instance, Costello

et al. (2015) examine the implications of partial enclosure of a renewable common resource

in a deterministic setting where the resource distribution regime never shifts. Costello

and Polasky (2008) focus on the effects of environmental variability on optimal spatial

harvest responses. These papers find that the optimal escapement level is time and state

independent (and are thus constant). The above results suggest that regime shift creates a

discontinuity in the equilibrium escapement levels, so optimal escapements shift in response

to the regime shift. This is consistent with previous analyses of optimal resource management

of a single, a-spatial stock under cyclical population dynamics (Carson et al. 2009) or with

environmental predictions (Costello et al. 2001; Kennedy and Barbier 2013).

We have focused on the implications of spatial regime shift on escapement decisions. But

we can also analyze the effects of regime shift on harvest and resource stock. We summarize

these results as follows:

Proposition 3. Assume that marginal costs are constant (i.e., c′j(x) = 0 for all x, j = A,B).

Over the phase prior to the shift, the following results hold.

(i) hB0 > h̃B0 and hA0 < h̃A0.

(ii) At any date t ≥ 1, xBt > x̃Bt if and only if DAB > D̄x
B and xAt > x̃At if and only if

DBA < D̄x
A.

(iii) At any date t ≥ 1, hBt > h̃Bt if and only if DAB > D̄h
B and hAt > h̃At if and only if

DBA < D̄h
A, where D̄x

j and D̄h
j depend only on λ, δ, Djj, D

s
jj, j = A,B and are given in the

Appendix.

At the initial date, anticipating that a shift may occur in the future, harvester B is more

aggressive (harvests more than she would in the no-shift case) while harvester A adopts

precautionary behavior (reduces her harvest compared to the no-shift case, Proposition 3i).

This seems intuitive because B stands to lose from the regime shift. However, these strategic
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interactions may be altered from period 2 on. In the steady state, the prospect of a shift

may induce a larger or a smaller harvest rate in each patch depending on the values of the

spatial characteristics.

To better understand the intuition underpinning this result, it is instructive to decompose

the difference between the steady-state harvest rate for harvester B under the threat and

no-threat cases as follows:

hBt − h̃Bt = [gA(eA)− gA(ẽA)]DAB︸ ︷︷ ︸
Term 1>0

+ [(DBBgB(eB)− eB)− (DBBgB(ẽB)− ẽB)]︸ ︷︷ ︸
Term 2<0

.

This condition shows that the effect of the threat of regime shift on harvester B’s

steady-state harvest is driven by two opposite forces, captured by the two bracketed terms

of the right hand side. Harvests in the patches are linked: As A reduces her initial harvest,

a larger stock will end up in patch B. Term 1 represents the strategic effect on resource

growth; it is positive by Proposition 2 and the fact that function gA is increasing. This force

tends to raise player B’s steady-state harvest rate under the threat. Term 2 represents the

direct effect of the threat and is negative because function gB is increasing and the modified

golden rule defined in (13). As DAB is reduced, the former force becomes weaker and the

latter force becomes stronger. Thus, it is entirely possible that the prospect of a future shift

(that will disadvantage player B) will, via strategic interactions with her opponent, cause B

to decrease her own steady state harvest. Likewise A may actually increase her harvest as

a consequence of the threat, even though the future shift will advantage that player. More

precisely, Result (iii) of Proposition 3 provides conditions on DAB and DBA under which

such findings hold.

For ease of exposition, we have primarily focused on the linear cost case. While this is a

common assumption in resource economics, it fails to capture the stock effect under which

the harvest cost increases as the resource stock tends to decline. Such a stock effect is present
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whenever c′j(x) < 0. Here we explore how a stock effect may alter our conclusions above.

The results are summarized in the following proposition.

Proposition 4. In the case where the cost functions are non-linear, it is possible that eA < ẽA

and eB > ẽB.

This result suggests that despite the fact that player B will be disadvantaged by the

regime shift, she may increase escapement in the pre-regime phase. More precisely, the

escapement level in patch j under the threat is larger than under the no-threat case if and

only if

λDs
jj[pj − cj(xsj)]g′j(ej) + (1− λ)Djj[pj − cj(xj)]g′j(ej)

> Djj[pj − cj(x̃j)]g′j(ẽj), (15)

where xsj = gj(ej)D
s
jj + gi(ei)D

s
ij, xj = gj(ej)Djj + gi(ei)Dij, and x̃j = gj(ẽj)Djj + gi(ẽi)Dij.

Like the result in Proposition 4, this counterintuitive result arises as a consequence of

strategic interactions, except that here, strategic interactions are being driven by the stock

effect. Recall that ej and ẽj correspond to the equilibrium escapement levels in patch j for

the threat and no-threat cases, xj and x̃j represent the steady-state resource stock obtained

under the threat and no-threat cases. Moreover, xsj can be interpreted as tomorrow’s resource

stock in patch j if regime shift happens today. Hence, Proposition 4 suggests that the

threat induces a larger escapement level in patch j, but only when harvester j’s expected

instantaneous marginal profit (properly discounted by the retention rate) is larger than the

discounted marginal profit that she would obtain in the absence of the threat. When c′j < 0,

ej > ẽj implies that hj0 < h̃j0. In other words, in the initial period, the threat may actually

induce a larger or a smaller harvest in each patch compared to the no-shift case. Numerical

results presented in the next section will confirm and illustrate these findings.
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5 An illustrative example

Here we present a brief numerical example to illustrate our analytical results. We consider

discrete-time logistic growth functions

gj(ej) = ej + rjej(1−
ej
Kj

) for j = A,B.

with parameters rj and Kj.
5 Initial stocks are xA0 = 0.84 and xB0 = 0.8 and we explore

a range of values for the regime shift probability, λ. Prior to the shift, we assume INLINE

MATRIX D=(.7 .26 .22 .77). Following the theoretical analysis, we assume that patch B

is disadvantaged by the shift, so Ds = (.82.14.28.65), so DBA increases and DBB and DBA

both decrease. We use a discount factor of δ = .95.
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Figure 2: Effects of the threat of regime shift on equilibrium escapement levels. Top panel
is for linear costs. Bottom panel is for non-linear costs.

5We use KA = 0.35; KB = 3; rA = 0.95; rB = 0.85.
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5.1 Example with linear cost

This section focuses on the scenario where the marginal costs are constant.6 We first

examine the effects of an exogenous increase in the probability of regime shift (λ) on the

equilibrium escapement levels in both patches. As illustrated in the top panel of Figure 2, an

exogenous increase in λ raises the equilibrium escapement level in patch A and diminishes the

equilibrium escapement level in patch B. This accords with economic intuition in advance of

regime shift: As the probability of regime shift rises, Player B becomes more aggressive (so

her escapement decreases) because she knows that the shift will move resource stock out of

her patch, while player A becomes more conservative (she increases her escapement) because

she will enjoy advantageous future conditions.

To better understand the effects of the threat of regime shift, we can also analyze the

effects of λ on steady state harvests. It turns out that even though escapements move in

opposite directions (with increasing λ), steady state harvests both diminish in λ (top panel

of Figure 3). This result is intuitive for patch A: she increases her escapement, and so

decreases her harvest, in λ. And while player B decreases her escapement, her steady state

harvest is a product of both players’ escapement decisions, and the decreased escapement by

B is insufficient to outweigh the increased escapement by A. Thus, her steady state harvest

also declines.

What do our numerical findings suggest about how a threat of spatial regime shift will

affect resource stocks? Holding the probability of the shift constant (say, at λ = 0.6),

the top panel of Figure 4 shows the dynamics of resource stock in patch A, patch B, and

system-wide. To illustrate what happens before and after the shift, we assume the shift

occurs in period τ = 4.7 Consistent with our theoretical results, the pre-shift and post-shift

steady-state resource stocks in each are reached in one period, though the dynamic patterns

6Recall in this case that prices and costs drop out of the escapement and harvests decisions.
7But all pre-shift results assume λ = 0.6.
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Figure 3: Effects of the threat of regime shift on steady-state harvests. Top panel is for
linear costs. Bottom panel is for non-linear costs.

for the equilibrium resource stock in both patches are different. To reach their respective

pre-shift steady state in period 1, the initial population in patch A declines whereas the

initial stock in patch B increases. Following the shift (in period 4), the resource stock in

patch A experiences a small increase to reach its post-shift steady state; stock in patch B

experiences the opposite effect. Numerical findings from this section are consistent with

results of Lemmas 1 and 2, and Propositions 2 and 3.

5.2 Non-linear cost functions

Since regime shift will disadvantage B and advantage A, it is intuitive that recognizing the

possibility of the shift would cause B to decrease escapement and A to increase escapement.

But Proposition 4 suggests that the presence of non-linear costs could actually reverse this

result. Here we consider the non-linear marginal cost functions cj(s) = θ/s for j = A,B,

with θ = 0.6 and pA = pB = 3. The other parameters are as described above.
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The bottom panel of Figure 2 illustrates equilibrium escapement levels for each patch over

a range of regime shift threat probabilities, λ. As the threat level increases, the equilibrium

escapement levels in both patches increase. In other words, a higher threat can cause both

players to increase their escapements. This numerical result is consistent with Condition 15.

A clear implication of these findings is that the threat of regime shift can reduce harvest

incentives in both patches at the initial date. These results contrast numerical solutions for

the linear cost case (Section 5.1) and are consistent with the findings and implications of

Proposition 4.

But as we have shown, an increase in escapement does not necessarily imply a decrease in

steady state harvest. In contrast to the constant marginal cost case, our simulations reveal

that an increase in λ reduces the steady-state harvest in patch A and increases it in patch

B, as illustrated in the bottom panel of Figure 3. Hence, relative to the no-shift case, player

A’s steady-state harvest under the threat is lower while player B’s steady-state harvest is

higher. These findings suggest that the stock effect combined with the threat have profound

and counterintuitive effects on the short run and long run harvest incentives.

The bottom panel of Figure 4 explores the dynamics of resource stock in the presence

of non-linear costs. Comparing the top and bottom panels reveals that the stock effect on

costs (i.e. the non-linear nature of costs) gives rise to qualitatively similar results as did the

linear cost case, but seems to narrow the gap between the equilibrium resource stocks in

each patch. Total resource stock also varies less over time in the presence of the stock effect.

A suite of further simulations covering a range of parameters corroborates our analytical

findings that depending on environmental, economic and biological variables, considering

linear or non-linear cost functions may yield qualitatively different responses to the threat

of regime shift.
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Figure 4: Evolution of the resource stocks over time. Top panel is for linear costs. Bottom
panel is for non-linear costs.

6 Conclusion

One of the most widely anticipated effects of global environmental change on natural resources

is the shift in the spatial distribution and migration of these stocks. While anticipated shifts

range from moderate to severe, and are occasionally predictable, in most cases, the occurrence

of such shifts is uncertain. We have examined the effects of the threat of future spatial regime

shift on strategic interactions between spatial property rights owners harvesting a mobile

natural resource. Because our model allows for different economic returns, heterogenous

growth, stock effects on costs, and spatial migration of the resource, we have been able to

extract a number of novel and interesting results about how strategic behavior interacts

with the threat of spatial regime shift. Our main contribution is to introduce the concept

of spatial regime shift where environmental conditions may suddenly and permanently shift

at an unknown date in the future. We have examined harvester responses to this type of

event. We considered as a baseline the no-shift case in which the resource distribution
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is deterministic and never shifts; this amounts to a non-cooperative spatial game in a

deterministic environment. Then, introducing the possibility of a future regime shift, we

examined the non-cooperative behavior of competing spatial property rights holders across

a range of shift magnitudes. We modeled spatial regime shift as an abrupt change in

the biophysical conditions that govern dispersal of the resource. The shift confers a clear

advantage to one location and a clear disadvantage to the other. Our focus is on how the

players compete prior to the shift (but with common knowledge about the likelihood of the

shift).

Our analysis has been agnostic about the degree of regime shift. In the extreme, the

shift could irreversibly drive the entire resource population out of one of the patches and

into the other. In keeping with the literature, we call this the “complete shift” case, where

Ds
BB = Ds

AB = 0 and Ds
BA = 1. Using methods similar to those in Propositions 3 and 4, our

analysis yields qualitatively similar results as for the partial regime shift case.

Whatever its magnitude, the threat of regime shift always increases initial harvest in

the disadvantaged patch when harvest costs are linear. But we also found that strategic

interactions can induce that patch to harvest less in steady state under the threat of regime

shift. Indeed, this finding can maintain even under the threat of complete shift. In the

case where harvest costs are non-linear, each of these results can be reversed under certain

biological and economic conditions that are examined in the paper.

Our results may shed some light on an interesting economic literature examining renewable

resource management under the threat of a doomsday event (see for instance, Polasky et al.

2011). When the probability of regime shift is exogenous and utility is linear in harvest, the

wisdom so far is that aggressive behavior always prevails prior to the shift. In this paper, the

probability of regime shift is exogenous and a harvester makes her harvest decisions under

the threat of the shift. In contrast to the aforementioned literature, even when utility is

linear in harvest, we find conditions under which such a harvester is cautious in response to
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even a catastrophic threat.

These results also relate to an interesting emerging policy debate. Many resource stocks

such as marine fish, waterfowl, and some economically-significant game species migrate across

national or other jurisdictions. At the same time, these migratory patterns are likely to

change as a consequence of future climate change. The results in this paper help inform

predictions about the behavioral responses of countries or other jurisdictions in advance of

shifts, and may reveal some counterintuitive results arising from strategic interactions to

capture the resource. While informative in their own right, these results could be leveraged

to inform policy responses for managing transboundary resources subject to possible future

regime shift.
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Appendix

A Details for Section 3

Proof of Lemma 1

(i) The equilibrium value function can be written as

Wj(xt) = pj(xjt − ejt)−
∫ xjt

ejt

cj(v)dv + δWj(xt+1), (16)

Since in (4), xt+1 depends only on ei and ej, Condition 6 implies that ei and ej are stock

independent. Therefore,

∂Wj

∂xit
(xt+1) = 0, for all i, j ∈ {A,B}, i 6= j.

Combining this result along with (16), it follows that

∂Wj

∂xkt
(xt) =


pj − cj(xjt) if k = j,

0 if k 6= j.

Substituting this equation into (6), we conclude that stock independency holds.

(ii) This is a simple consequence of the fact that ei and ej are time and state independent.

Proof of Lemma 2

Similar to the proof of Lemma 1.
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Proof of Proposition 1

(i) In the case where c′j(x) = 0 for all x, j = A,B, Equation 7 yields

g′j(ej) =
1

δDs
jj

, g′j(ẽj) =
1

δDjj

. (17)

Since Ds
AA > DAA and DBB > Ds

BB, it follows that g′A(eA) < g′A(ẽA) and g′B(eB) > g′B(ẽB).

Hence, ẽA < eA and ẽB > eB. This is the case because functions gj(.), j = A,B are concave

such that functions g′j(.), j = A,B are decreasing.

(ii) For t ≥ τ + 1:

xjt ≡ gj(ej)D
s
jj + gi(ei)D

s
ij > gj(ẽj)Djj + gi(ẽi)Dij ≡ x̃jt if and only if

Ds
ij > D̄s

jx ≡
gj(ẽj)Djj + gi(ẽi)Dij − gj(ej)Ds

jj

gi(ei)
.

(iii) For t ≥ τ + 1, the relation

hjt ≡ xjt − ejt = gj(ej)D
s
jj + gi(ei)D

s
ij − ejt > gj(ẽj)Djj + gi(ẽi)Dij − ẽjt = x̃jt − ẽjt ≡ h̃jt

holds if and only if

Ds
ij > D̄s

jh ≡
gj(ẽj)Djj + gi(ẽi)Dij − gj(ej)Ds

jj + (ej − ẽj)
gi(ei)

.

Equation17 suggests that for j = A,B, ej depends only on δ and Ds
jj whereas for j = A,B,

ẽj depends only on δ and Djj. As such, D̄s
jx and D̄s

jh depend only on δ,Ds
jj, Dij, and Djj,

j = A,B.
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B Details for Section 4

Proof of Proposition 2

(i) In the case where c′j(.) = 0, Equation 7 simplifies to

g′j(ej) =
1

δ(λDs
jj + (1− λ)Djj)

. (18)

(ii) Using the implicit value theorem, ej is a continuously differentiable function of λ.

We then differentiate both sides of (18) with respect to λ. Rearranging the outcome yields

∂ej
∂λ

=
Djj −Ds

jj

g′′j (ej)[λDs
jj + (1− λ)Djj)]2

, for j = A,B.

Since g′′j (ej) < 0, DBB > Ds
BB and Ds

AA > DAA, the result follows.

Proof of Proposition 3

(i) Since eA0 ≡ xA0−hA0 > ẽA ≡ xA0− h̃A0, we necessarily have h̃A0 > hA0. Moreover, since

eB0 ≡ xB0 − hB0 < ẽB ≡ xB0 − h̃B0, we necessarily have h̃B0 < hB0.

(ii) Using the facts that xjt ≡ gj(ej)Djj +gi(ei)Dij, x̃jt = gj(ẽj)Djj +gi(ẽi)Dij, gA(eA) >

gA(ẽA), and gB(eB) < gB(ẽB), we get xBt > x̃Bt if and only if

DAB > D̄x
B ≡ DBB

gB(ẽB)− gB(eB)

gA(eA)− gA(ẽA)
.

Using a similar reasoning, we find that xAt > x̃At if and only if

DBA < D̄x
A ≡ DAA

gA(eA)− gA(ẽA)

gB(ẽB)− gB(eB)
.

(ii) Using a similar method as for the proof of result (ii) along with the fact that hj =
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xj − ej, j = A,B, we get

• hBt > h̃Bt if and only if

DAB > D̄h
B ≡

DBB(gB(ẽB)− gB(eB))− (ẽB − eB)

gA(eA)− gA(ẽA)
.

• hAt > h̃At if and only if

DBA < D̄h
A ≡

DAA(gA(eA)− gA(ẽA))− (eA − ẽA)

gB(ẽB)− gB(eB)
.

Notice that for j = A,B, D̄h
j and D̄x

j depend only on λ, δ,Djj, and Ds
jj.

Proof of Proposition 4

Recall that for j = A,B, ej satisfies Equation 12. Hence, the left-hand side of Condition 15

is equal to pj − cj(ej) while the right-hand side corresponds to pj − cj(ẽj). So Condition 15

can be rewritten pj − cj(ej) > pj − cj(ẽj). Since function `j(x) = pj − cj(x) is increasing, we

conclude that Condition 15 holds if and only if ej > ẽj.
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