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Abstract

Because they are populated with large firms. We construct a model of idea flows

in which growth and volatility both depend on the prevalence of large firms in

a sector. There is a finite number of firms that choose whether to imitate or to

experiment. Experimenting means producing using a random technology, given

by a discrete Markov deviation from its earlier value. In the limit, experimenting

firms define an expanding technology frontier. Imitating means drawing tech-

nology from the pool of existing producers. In equilibrium, only large enough

firms experiment, and growth increases in their share. Since experimenting has

stochastic consequences, so does volatility. The model’s key predictions are born

out in US firm-level data: growth and volatility both increase in the share of large

firms. The dispersion in tails can explain about 40% of the positive link between

growth and volatility at the 4-digit level. As the data are aggregated, growth

and volatility cease to correlate significantly: We argue this is consistent with

our model, as structural change reallocates factors across sectors from high to

low technology growth. In the aggregate, the link between large, experimenting

firms, growth, and volatility is broken.
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Xavier Gabaix, Boyan Jovanovic, Robert Lucas, Claire Lelarge and Isabelle Mejean.
†Nuffield College, Department of Economics, University of Oxford. basile.grassi@economics.ox.ac.uk
‡Paris School of Economics, Centre National de la Recherche Scientifique. jean.imbs@psemail.eu

1



1 Introduction

Risk is compensated by returns. While this tradeoff is a central tenet of finance, surpris-

ingly little is known about its counterpart in the real economy: Are volatile activities

growing fast because they are risky? Of course, there is an extensive and venerable

literature discussing the relation between growth and volatility going back at least to

Schumpeter. But it is largely silent about the risk-taking behavior of firms, and how

it translates into produced quantities; it has focused instead on models of causal links,

going from growth to volatility, or from volatility to growth. Here we argue theoretically

and empirically that growth and volatility arise from the risk taking behavior of firms

that are active in a given sector. In our model, risk in a sector can be summarized by

the characteristics of the distribution of firms productivities. It is because they contain

a few very productive firms that risky sectors grow fast.

We construct a growth model based on ideas flow à la Lucas (2009), where firms can

either imitate or experiment. Imitators delay production by one period, and draw their

technology from the set of incumbents. This strategy carries high risk, but potentially

high return as the technological jump can be substantial. Experimenters produce every

period, but after experimentation draw technology from a Markov chain process. The

new technology can be identical, lower, or higher with exogenous probabilities. This

strategy carries low risk, and low return. The initial distribution of ideas (and of

firms) is finite. In equilibrium, the technology frontier expands thanks to experimenting

firms coming up with new ideas, and potentially better technologies. Since only highly

productive (large) firms find it worthwhile to experiment, large firms are the engine of

growth: growth is high in a sector populated by a few large firms that come up with

new technologies, that are in turn copied by a large mass of risk-taking, small firms.

With a finite distribution of firms, the endogenous churning of productivities engenders

volatility. This comes from a slightly modified granularity argument: as in Carvalho

and Grassi (2015), volatility increases with the share of large firms in the economy,

because they are the ones that tend to experiment. But imitating firms also contribute

to volatility: we show their contribution also increases in the share of large firms, since

these are the ones expanding the support of existing technologies. The risk taken by

small, imitating firms increases with the prevalence of large firms, since it expands the

support of technologies available to imitate. Thus, both growth and volatility increase

in the share of large firms in the economy.
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In US firm-level data, we show sector-level growth and volatility correlate positively

and significantly with the prevalence of large firms, estimated in a variety of ways.

The relation exists both in the short and the long term, and is robust to a battery of

alternative specifications. In the data, risky sectors grow fast because they tend to be

populated by a few, very large firms, and these happen to have good ideas. This is

consistent with the well known trade off between risk and return: sectors with a large

mass of small, risk-taking firms display both high growth and high volatility. The result

is also consistent with the cross-sector evidence documented in Imbs (2007).

We also show the positive link between growth, volatility, and the share of large firms

tends to dissipate as the data are aggregated. Our model can explain why. In our theory,

the dispersion across sectors in growth rates -and volatilities- reflects differences in the

growth of technology, determined endogenously by the prevalence of large firms. With

heterogeneous growth rates in technology, we have known since Baumol (1967), or Ngai

and Pissarides (2007) that structural change will happen. In particular, in equilibrium,

factors of production move from high technology to low technology growth sectors,

in order to serve the continuing demand for goods produced with low productivity:

as shown by Ngai and Pissarides (2007), the result requires some complementarities

in demand across sectors. If instead goods are substitutes, then of course factors of

production move to high technology sectors.

In a sector defined as an aggregate of substitutable goods, the dynamics of production

reflect therefore the characteristics of the high technology goods. But in a sector de-

fined as an aggregate of complementary goods, the dynamics of production are instead

dominated by the low technology goods. It is well known - and intuitive - that goods

are substitutes at a granular level, but complements in the aggregate. As data are ag-

gregated, the dispersion in measured growth and volatility at sector level is decreasingly

reflective of the growth of technology, because factors are increasingly allocated in low

technology activities. We show this in an extended version of our idea flows model to

a multi-sector model with nested CES demand.1

Our paper builds on the recent literature on “idea flows” pioneered by Lucas (2009) and

Lucas and Moll (2014). It is most closely related with Perla and Tonetti (2014), who

showed imitation could translate into long run productivity growth. We augment their

1The same logic applies to the time pattern of volatility at country level. Countries at the early
stages of structural transformation are concentrated in sectors with high technology growth, and display
high volatility. With structural transformation, factors are reallocated towards activities with relatively
low technology growth, and volatility falls.
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model with experimenting firms whose optimal decisions create an expanding technology

frontier. Thus, we can work with a finite distribution of firms and of technology, as

Romer (2015) recommends.

Because we have a finite number of firms, our paper is also related with the recent litera-

ture on“granularity”. As in Gabaix (2011), firm specific disturbances have consequences

on aggregate volatility, because of the fat-tailed distribution of firm productivity. And

as in Carvalho and Grassi (2015), an aggregate business cycle arises endogenously as

individual firm productivities vary. Here they vary endogenously, in response to the

firm’s optimal decision to imitate or to experiment.

The endogenous emergence of growth and volatility, and the fact they both relate to an

underlying cause (with the same sign) is related to the venerable Schumpeterian view

that growth is inherently a destructive process. So that volatility is but a manifestation

of the growth process, as in for instance in models of creative destruction introduced

by Aghion and Howitt (1992), or growth is itself caused by volatility, as in the view

that recessions have cleansing effects (see for instance Caballero and Hammour, 1994 or

Aghion and Saint-Paul, 1991). Here, there is no causal link from growth to volatility, or

in the other direction: both are caused by the distribution of firm productivities, and

its evolution over time.

The existence of an empirical relation between growth and volatility is equally well

known, with early contributions by Ramey and Ramey (1995), Saint-Paul (1993), or

Imbs (2007). Interestingly, aggregation matters for the estimated relation: in granular

sector data, growth and volatility correlate positively, but the relation vanishes with

aggregation, to change signs across countries. It is as if the axiomatic tradeoff between

risk and return dissipates in the aggregate. Here we provide an explanation for this fact,

based on recent models of structural transformation. Since growth and volatility are

both created by the process of technological change at sector level, we model aggregation

following the intuition in Ngai and Pissarides (2007). The argument is inspired by

Baumol’s (1967) “cost disease”, arguing that during structural transformation, factors

of production are reallocated from high productivity growth to low productivity growth

activities (i.e., from high volatility to low volatility sectors in our model). Finally, the

paper is related to the empirical literature concerned with volatility and development.

For instance, Koren and Tenreyro (2007) document that countries productive structure

moves from more volatile to less volatile sectors as they develop. This is a direct

prediction of our model.
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The rest of the paper is structured as follows. Section 2 presents our model. Section 3

discusses our empirics. Section 4 concludes.

2 Model

We present a model populated by a finite number of firms, where the growth rate of

output and its volatility both depend on the cross-sectional moments of the distribution

of firm size. Growth happens as firms can either experiment on their own technology

or imitate their peers à la Perla and Tonetti (2014). In equilibrium the distribution of

firms is follows a Pareto distribution: since there is a finite number of firms, aggregate

uncertainty arises, just like in Carvalho and Grassi (2015). Aggregate fluctuations arise

purely from uncorrelated idiosyncratic shocks at the firm level, following the “Granular

Hypothesis” introduced in the seminal paper by Gabaix (2011).

We first describe the model abstracting from any aggregate uncertainty arising from

idiosyncratic shocks. We derive a Balanced Growth Path (BGP) that is very similar to

the one described in Perla and Tonetti (2014). We next take into account the aggregate

uncertainty arising from firm level uncertainty, and we characterize the stochastic pro-

cess of output growth. We show that both the conditional expectation and the volatility

of output growth is determined by cross-sectional moments of the firm distribution.

2.1 Overview

Time is discrete and infinite and there in an integer number of firms, N , that are

heterogeneous in term of their productivity levels. Firms produce perfectly substitutable

good in a perfect competition environment. The productivity level evolves on a discrete

(an infinite) evenly distributed grid: Φ = {ϕ, ϕ2, . . . , ϕs, . . .} = {ϕs|∀s ∈ N
∗} where

ϕs+1/ϕs = ϕ > 1. Each period firms face a binary choice. They can either (i) produce

and experiment or (ii) postpone production and imitate their peers.

Experimenting Firms
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si,tsi,t − 1 si,t + 1

a

b = 1− a− c

c

Figure 1: Description of experimenting firms productivity process.

If a firm decides to experiment, it produces ϕs units of goods today. However, its next

period productivity follows a Markov Chain described in figure 1 by Ps,s′ = P{ϕs′|ϕs}
over Φ where:

Ps,s′ =



















a if s′ = s− 1 Move down the grid

b if s′ = s Do not move

c if s′ = s+ 1 Move up the grid

0 if otherwise

(1)

This Markovian process taken from Cordóba (2008) is a discretization of Gibrat’s law

which states that the growth rate is independent of the current level. For a productivity

level si,t and conditional on experimentation we have E

[

ϕ
si,t+1−ϕ

si,t

ϕ
si,t |ϕsi,t

]

= a(ϕ−1 −

1) + c(ϕ − 1) and Var
[

ϕ
si,t+1−ϕ

si,t

ϕ
si,t |ϕsi,t

]

= σ2
e where σ2

e is a constant independent of

ϕsi,t. Define Vt(s) the value of a firm t productivity level ϕs at date t, and V E
t (s) the

value of experimenting for that firm at date t. We have:

V E
t (s) = ϕs + β

∑

s′

Vt+1(s
′)Ps,s′

where β is the discount factor and Ps,s′ is defined in equation 1.

Imitating Firms

If a firm decides to imitate at date t, production is delayed by one period. Productivity

next period is drawn from the distribution of producers at date t. Imitating firms inherit

the level of productivity of one of the producers active at date t. Define µs,t the number

of firms at productivity level ϕs for a given s ∈ N∗. The sequence µt = {µs,t}s∈N∗

describes the distribution of productivities across the productivity grid Φ.
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Define St the number of imitating firms at date t. The value of imitating V I
t (s) for a

firm with productivity level ϕs at date t is given by:

V I
t (s) = β

∑

firms at s′ produce

Vt+1(s
′)

µs′,t

N − St

The choice between experimentation and imitation is similar to the one described in

Perla and Tonetti (2014), but for two important differences. First, producing firms

are subjected to idiosyncratic random productivity shocks, defined by equation 1 and

illustrated in figure 1. This is an important ingredient to prove the existence of a

balanced growth path. Second, there is a finite number of firms rather than a continuum.

Together with the existence of a balanced growth path, this assumption will generate

aggregate uncertainty, arising from granularity as in Gabaix (2011) and Carvalho and

Grassi (2015).

Each period, firms face a choice between being a imitator or a experimentator. The

firm problem can be written as follow:

Vt(s) = Max

{

ϕs + β
∑

s′∈N∗

Vt+1(s
′)Ps,s′ ; β

∑

s′ produce

Vt+1(s
′)

µs′,t

N − St

}

where the first term is the value of experimentation and the second the value of imita-

tion. Such a problem yields a threshold rule

{

s < st, V I
t (s) > V E

t (s) the firm decides to imitate

s ≥ st, V I
t (s) ≤ V E

t (s) the firm decides to experiment
(2)

where st is such that the value of producing is above the value of imitating, i.e. st is

such that V E
t (st)− V I

t (st) ≥ 0 and V E
t (st − 1)− V I

t (st − 1) < 0.

Focusing on rational expectations equilibria implies that st−1 = mt+1 = min support{µt+1}.
The intuition is straightforward: All firms strictly below st imitate, and draw from

the producing firms that have productivity weakly above st. Their next period pro-

ductivity will thus be weakly above st. All firms weakly above st engage in produc-

tion, their productivity next period will be higher than st − 1. The firm with the

lowest productivity level will be the one whose productivity was st and that sees its

productivity decreases by one level to st − 1 because of a bad draw. It follows that

st − 1 = mt+1 = min support{µt+1}.
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The Evolution of the Productivity Distribution

Recall that µs,t is the number of firms with productivity level ϕs at date t, and that the

sequence µt = {µs,t}s∈N∗ is the distribution of firms across productivity levels Φ. We

now describe how the distribution of firms across productivity levels evolves over time.

For s > st, the number of firms with productivity s at date t+1 is the sum of producing

firms and imitating firms. The former are the sum of three terms: (i) the producing

firms at productivity s+1 at date t with a bad draw, of which there are aµs+1,t (ii) the

producing firms at productivity s at date t with unchanged productivity, of which there

are bµs,t, and (iii) the producing firms with productivity s−1 at date t that experience

a good draw, of which there are cµs−1,t. There are, at date t, St imitating firms that

have a probability µs,t

N−St
to imitate a date t producing firms with productivity level ϕs.

The total number of firms at date t+ 1 with productivity level ϕs is therefore:

µs,t+1 = aµs+1,t + bµs,t + cµs−1,t + St

µs,t

N − St

(3)

For s ∈ {st − 1, st}, the argument is similar except that there are no producing firms

at st − 1 at date t and thus:

µs,t+1 =

{

aµst+1,t + bµst,t + St
µst,t

N−St
if s = st

aµst,t if s = st − 1
(4)

Finally, for s < st − 1, there are no firm at date t at the productivity level ϕs.

Given current productivity distribution µt and the solution of the firm problem de-

scribed by the threshold rule 2, equations 3 and 4 describe the evolution of the produc-

tivity distribution over time.

Figure 2 displays the evolution of the distribution of firms productivities when all firms

start with the same level. At date t = 0, all firms have identical productivity, and there

is no gain to imitate. All firms decide to experiment. At the following period t = 1, some

firms will therefore be below the threshold st and thus will imitate. This process goes

on until, the number of firms above the threshold is high enough to increase the value of

the threshold st. In this example it happens at t = 7. The same example in Perla and

Tonetti (2014) will lead to a very different outcome: since there is no experimentation,

when all the firms are identical initially then there is no growth because firms will never

have any incentive to imitate their peers. The system will stay at the top left panel
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Figure 2: The evolution of the distribution of firms when all the firms starts at the
same level.

for ever. Introducing some randomness at the firm level allows the imitation process of

Perla and Tonetti (2014) to create endogenous growth.

2.2 Balanced Growth Path

This section introduces the Balanced Growth Path of this economy. Each firm growth

will not necessarily be balanced, but the distribution of firms - which ultimately matters

for the aggregate - is scale invariant. The section open with definitions, we then move

to the characterization of the productivity distribution of firms along a balanced growth

path (BGP). Finally, we prove the existence of a BGP.
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Aggregate output Yt is defined as the sum of firm level output, Yt =
∑N

i=1 ϕ
si,t =

∑∞

s=1 ϕ
sµs,t. Along a BGP the productivity distribution of is fixed as long as its support

grows at the appropriate rate. This notion is defined formally below.

Definition 1 (Scale invariance) Given a scale parameter g > 1 such that g = ϕη. We

have gtϕs = ϕηtϕs = ϕs+ηt. A sequence of distribution µt = {µs,t}s∈N is scale invariant

for g = ϕη iff

µs+ηt,t is identical for all t

In other words the distribution remains unchanged if the grid is scaled by a factor g.

The concept is common to models of growth with heterogeneous agents, e.g., Alvarez,

Buera, Lucas (2008) and Luttmer (2007).

We are now ready to define the BGP.

Definition 2 (Balanced Growth Path) A BGP with a constant g = ϕη is a competitive

equilibrium such that

i The sequence of productivity distributions and the growth rate, {µt, g}, are scale

invariant.

ii Output grows geometrically at rate g: Yt+1 = gYt

iii The minimum of the support of µt grows arithmetically at rate η: st+1 = st + η

With these definitions, we can solve for the productivity distribution of firms.

Proposition 1 Given a growth rate g = ϕη with η > 0, the following scale invariant

distribution is a solution to the system formed by equations (3) and (4) describing the

evolution of the productivity distribution:

µs,t =























N(1 − ϕ−δ)
(

ϕs

ϕst−1

)−δ

for s > st−1

N(1− ϕ−δ)
(

1− cϕδϕ−δη
)

for s = st−1

N(1− ϕ−δ)aϕ−δη for s = st−1 − 1

0 for s < st−1

(5)

where δ =
log a

c

logϕ
. For s>st−1 this distribution is Pareto with tail index δ. The tail index

is a function of the Markovian process generating firm level productivity.
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Proof:

It is easy to see that this distribution sum to N , the number of firms in the economy:

∞
∑

s=mt=st−1−1

µs,t = N(1− ϕ−δ)



aϕ−δη +
(

1− cϕδϕ−δη
)

+ (ϕδ)st−1

∞
∑

s=st−1+1

(ϕ−δ)s





= N(1− ϕ−δ)

(

aϕ−δη +
(

1− cϕδϕ−δη
)

+ (ϕδ)st−1
(ϕ−δ)st−1(ϕ−δ)

1− ϕ−δ

)

= N
((

aϕ−δη + 1− cϕδϕ−δη
)

(1− ϕ−δ) + ϕ−δ
)

= N
(

aϕ−δη + 1− cϕδϕ−δη − aϕ−δϕ−δη − ϕ−δ + cϕ−δϕδϕ−δη + ϕ−δ
)

= N
(

1 + aϕ−δη − cϕδϕ−δη − aϕ−δϕ−δη + cϕ−δη
)

By definition of δ, ϕ−δ = c
a
and ϕδ = a

c
. Substituting:

∞
∑

s=mt

µs,t = N
(

1 + aϕ−δη − c
a

c
ϕ−δη − a

c

a
ϕ−δη + cϕ−δη

)

= N
(

1 + aϕ−δη − aϕ−δη − cϕ−δη + cϕ−δη
)

= N

This distribution sum to N the number of firms in the economy. We now show this

distribution satisfies the system formed by equations (3) and (4).

For s > st we have

µs,t+1 = aµs+1,t + bµs,t + cµs−1,t + St

µs,t

N − St

(6)

By definition, st = st−1 + η > st−1 since η > 1. Therefore, for s > st > st−1, we have:

aµs+1,t + bµs,t + cµs−1,t = N(1− ϕ−δ) (ϕst−1)δ
(

a
( c

a

)s+1

+ b
( c

a

)s

+ c
( c

a

)s−1
)

= N(1− ϕ−δ) (ϕst−1)δ
(

a−scs+1 + (1− a− c)csa−s + ccsa1−s
)

= N(1− ϕ−δ) (ϕst−1)δ
(

a−scs
)

= N(1− ϕ−δ) (ϕst−1)δ (ϕs)−δ = µs,t

Substituting in equation 6 yields

aµs+1,t + bµs,t + cµs−1,t + St

µs,t

N − St

=
N

N − St

µs,t (7)
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The mass of producers at time t is given by:

N − St =

∞
∑

s=st

µs,t =

∞
∑

s=st

N(1− ϕ−δ)

(

ϕs

ϕst−1

)−δ

= N(1− ϕ−δ) (ϕst−1)δ
(ϕst)−δ

1− ϕ−δ

Substituting back in equation 7, we get

N

N − St

µs,t = N(1− ϕ−δ)

(

ϕs

ϕst

)−δ

= µs,t+1

This completes the proof of Proposition 1 for s > st. For s ≤ st, since st = st−1 + η >

st−1 we have

aµst+1,t + bµst,t + St

µst,t

N − St

= −cN(1− ϕ−δ)ϕδ

(

ϕst

ϕst−1

)−δ

+
N

N − St

µst,t

= −cN(1− ϕ−δ)ϕδ

(

ϕst

ϕst−1

)−δ

+N(1− ϕ−δ)

= −cN(1− ϕ−δ)ϕδ (ϕη)−δ +N(1− ϕ−δ)

= N(1− ϕ−δ)
(

1− cϕδϕ−ηδ
)

= µst,t+1

Finally since st = st−1 + η > st−1,

aµst,t = aN(1 − ϕ−δ)

(

ϕst

ϕst−1

)−δ

= aN(1 − ϕ−δ) (ϕη)−δ = µst−1,t+1

This completes the proof of Proposition 1. As soon as the system formed by equations

(3) and (4) admits one solution, then it satisfies a BGP. �

Figure 3 illustrates the productivity distribution of firms along a BGP. The distribution

of firms is Pareto on the right tail with tail δ. This results is similar to the one of

Perla and Tonetti (2014), except that these authors have to assume enough initial

heterogeneity, i.e., a fat enough right tail, so as to ensure that the BGP is well defined.

Here, firms are experimenting and the assumption is not necessary. Heuristically, the

Perla and Tonetti (2014) imitation process truncates the initial distribution at the BGP

growth rate. Here the existence of the Markovian process generate the distribution.

Armed with the distribution of firms along a BGP, we can solve for the number of

imitating firms on the BGP.
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Figure 3: The firm size distribution along a BGP.

Proposition 2 The number of firms S that imitate is constant along a BGP and equal

to S = N(1− g−δ)

Proof: Since st = st−1 + η along a BGP, we have

St =

st−1
∑

s=st−1−1

µs,t = N(1− ϕ−δ)

(

aϕ−δη +
(

1− cϕδϕ−δη
)

+ (ϕst−1)δ
st−1+η−1
∑

s=st−1+1

(ϕs)−δ

)

= N(1− ϕ−δ)

(

aϕ−δη +
(

1− cϕδϕ−δη
)

+ (ϕst−1)δ
(ϕst−1)−δϕ−δ − (ϕst−1)−δϕ−δη

1− ϕ−δ

)

= N(1− ϕ−δ)

(

aϕ−δη +
(

1− cϕδϕ−δη
)

+
ϕ−δ − ϕ−δη

1− ϕ−δ

)

= N
(

aϕ−δη(1− ϕ−δ) +
(

1− cϕδϕ−δη
)

(1− ϕ−δ) + ϕ−δ − ϕ−δη
)

= N
(

aϕ−δη − aϕ−δϕ−δη + 1− cϕδϕ−δη − ϕ−δ + cϕ−δϕδϕ−δη + ϕ−δ − ϕ−δη
)

= N
(

aϕ−δη − cϕ−δη + 1− aϕ−δη + cϕ−δη − ϕ−δη
)

= N
(

1− ϕ−δη
)

= N
(

1− g−δ
)

where the last equality used the fact that ϕ−δ = c
a
. S does not depend on time.

�

We are now ready to show the existence of the BGP. The proof is very similar to

Perla and Tonetti (2014) except that producing firms are subjected to the idiosyncratic

Markovian process.
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Proposition 3 A BGP exist with growth rate

g =

(

β
1− ϕ−δ

1− ϕ1−δ

)
1

δ−1

Proof:

We form the following guess: ∀s ≤ st, Vt(s) = ϕst−1W . This means that for firms below

the threshold st (i.e imitating firms) the value function is proportional to ϕst−1. We

then need to solve for the constant W and the growth rate g = ϕη.

Given the guess, the value functions for firm st indifferent between imitating and ex-

perimenting must verify:

Vt(st) = ϕst−1W = ϕst + β (aVt+1(st − 1) + bVt+1(st) + cVt+1(st + 1))

where the first equality comes from the guess and the second comes from the fact that

the value function has to be equal to value of experimenting. Since st < st+η = st+1 (we

have positive growth, i.e η > 0) we have st+1 ≤ st+1 and thus st−1 < st < st+1 ≤ st+1.

It follows from the guess at date t + 1 that aVt+1(st − 1) + bVt+1(st) + cVt+1(st + 1) =

ϕstW (a+ b+ c) = ϕstW = gϕst−1W . Substituting in the previous equation:

ϕst−1W = gϕst−1 + βgϕst−1W

which implies:

W =
g

1− gβ
(8)

The number of producing firms is N−S = N−N(1−g−δ) = Ng−δ.2 At the indifference

point st, the value of experimenting should be equal to the value of imitating:

gϕst−1+βgϕst−1W = β
∑

s′≥st

Vt+1(s
′)

µs′,t

g−δN
= βN−1gδ





st+1−1
∑

s′=st

Vt+1(s
′)µs′,t +

∞
∑

s′=st+1

Vt+1(s
′)µs′,t





where we used the fact thatN−S = Ng−δ. For s′ ≤ st+1−1 < st+1, firms at t+1 imitate

and their value will be Vt+1(s
′) = ϕstW according to our guess. For s′ ≥ st > st−1, we

2This is similar to equation (10) in Perla and Tonetti (2014).
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have µs′,t = N(1 − ϕ−δ)
(

ϕs′

ϕst−1

)−δ

.3 It follows that:

st+1−1
∑

s′=st

Vt+1(s
′)µs′,t = ϕstW

st+1−1
∑

s′=st

µs′,t = ϕstWN(1− ϕ−δ)(ϕst−1)δ
st+1−1
∑

s′=st

ϕ−s′δ

= ϕstWN(1− ϕ−δ)(ϕst−1)δ
ϕ−stδ − ϕ−st+1δ

1− ϕ−δ

= ϕstWN(ϕst−1)δ(ϕ−stδ − ϕ−st+1δ)

= ϕstWNg−δ(1− g−δ)

At t + 1, for s′ ≥ st+1 firms produce and thus

∞
∑

s′=st+1

Vt+1(s
′)µs′,t =

∞
∑

s′=st+1

[

ϕs′ + β (aVt+2(s
′ − 1) + bVt+2(s

′) + cVt+2(s
′ + 1))

]

µs′,t

(9)

For s′ ≥ st+1 > st−1, we have µs′,t = N(1 − ϕ−δ)
(

ϕs′

ϕst−1

)−δ

. We now analyze each of

the two terms at the right hand side. Rearranging the first term:

∞
∑

s′=st+1

ϕs′µs′,t = N(1 − ϕ−δ)(ϕst−1)δ
∞
∑

s′=st+1

ϕs′(1−δ) = N(1 − ϕ−δ)(ϕst−1)δ
ϕst+1(1−δ)

1− ϕ1−δ

= N
1− ϕ−δ

1− ϕ1−δ
(ϕst−1)δϕ−st+1δϕst+1

= ϕst+1Ng−2δ 1− ϕ−δ

1− ϕ1−δ
(10)

3This is similar to equation (13) in Perla and Tonetti (2014).
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Rearranging the second term:

β

∞
∑

s′=st+1

(

aVt+2(s
′ − 1) + bVt+2(s

′) + cVt+2(s
′ + 1)

)

µs′,t

= βN(1− ϕ−δ)(ϕst−1 )δ
∞
∑

s′=st+1

(

aVt+2(s
′ − 1) + bVt+2(s

′) + cVt+2(s
′ + 1)

)

ϕ−s′δ

= βN(1− ϕ−δ)ϕst−1δ



a

∞
∑

s′=st+1

Vt+2(s
′ − 1)ϕ−s′δ + b

∞
∑

s′=st+1

Vt+2(s
′)ϕ−s′δ + c

∞
∑

s′=st+1

Vt+2(s
′ + 1)ϕ−s′δ





= βN(1− ϕ−δ)ϕst−1δ



a

∞
∑

s′=st+1−1

Vt+2(s
′)ϕ−s′δϕ−δ + b

∞
∑

s′=st+1

Vt+2(s
′)ϕ−s′δ + c

∞
∑

s′=st+1+1

Vt+2(s
′)ϕ−s′δϕδ





= βN(1− ϕ−δ)ϕst−1δ





∞
∑

s′=st+1

(

aϕ−δ + b+ cϕδ
)

Vt+2(s
′)ϕ−s′δ + aVt+2(st+1 − 1)ϕ−δϕ−(st+1−1)δ − cVt+2(st+1)ϕ

δϕ−(st+1)δ





By definition we have ϕ−δ = c
a
. Therefore, on the one hand we have aϕ−δ + b+ cϕδ =

a c
a
+ b+ ca

c
= c+ b+ a = 1, and on the other hand we have a = cϕδ. Given our guess,

and since st+1 − 1 < st+1 < st+1 + η = st+2, we have Vt+2(st+1 − 1) = Vt+2(st+1) =

ϕst+1W = gϕstW . Using all these results leads to:

β
∞
∑

s′=st+1

(

aVt+2(s
′ − 1) + bVt+2(s

′) + cVt+2(s
′ + 1)

)

µs′,t

= βN(1− ϕ−δ)ϕst−1δ





∞
∑

s′=st+1

Vt+2(s
′)ϕ−s′δ + aϕ−δϕδgϕstWϕ−st+1δ − cϕδgϕstWϕ−st+1δ





= βN(1− ϕ−δ)ϕst−1δ





∞
∑

s′=st+1

Vt+2(s
′)ϕ−s′δ + agϕstWϕ−st+1δ − agϕstWϕ−st+1δ





= βN(1− ϕ−δ)ϕst−1δ

∞
∑

s′=st+1

Vt+2(s
′)ϕ−s′δ

The indifference condition between imitating and experimenting can be rewritten at

t+ 1:

gϕst + βgϕstW = β
∑

s′≥st+1

Vt+2(s
′)
µs′,t+1

Ng−δ
= gδβ(1− ϕ−δ)ϕstδ

∑

s′≥st+1

Vt+2(s
′)ϕ−s′δ
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Where we have used the fact that for s′ ≥ st+1 > st we have µs′,t+1 = N(1 −
ϕ−δ)ϕstδϕ−s′δ. Rearranging:

∑

s′≥st+1

Vt+2(s
′)ϕ−s′δ =

gϕst + βgϕstW

gδβ(1− ϕ−δ)ϕstδ

Substituting back:

β

∞
∑

s′=st+1

(

aVt+2(s
′ − 1) + bVt+2(s

′) + cVt+2(s
′ + 1)

)

µs′,t = βN(1− ϕ−δ)ϕst−1δ
gϕst + βgϕstW

gδβ(1− ϕ−δ)ϕstδ

= ϕstNg−2δg(1 + βW ) (11)

Substituting equations 10 and 11 back in equation 9 yields:

∞
∑

s′=st+1

Vt+1(s
′)µs′,t = ϕst+1Ng−2δ 1− ϕ−δ

1− ϕ1−δ
+ ϕstNg−2δg(1 + βW )

= gϕstNg−2δ 1− ϕ−δ

1− ϕ1−δ
+ ϕstNg−2δg(1 + βW )

= Nϕstg1−2δ

(

1− ϕ−δ

1− ϕ1−δ
+ 1 + βW

)

At the indifference point at time t we thus have:

gϕst−1 + βgϕst−1W = βN−1gδ





st+1−1
∑

s′=st

Vt+1(s
′)µs′,t +

∞
∑

s′=st+1

Vt+1(s
′)µs′,t





= βN−1gδ
(

ϕstWNg−δ(1− g−δ) +Nϕstg1−2δ

(

1− ϕ−δ

1− ϕ1−δ
+ 1 + βW

))

= βϕst

(

W (1− g−δ) + g1−δ

(

1− ϕ−δ

1− ϕ1−δ
+ 1 + βW

))

= βgϕst−1

(

W (1− g−δ) + g1−δ

(

1− ϕ−δ

1− ϕ1−δ
+ 1 + βW

))
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Rearranging

1 + βW = β

(

W (1− g−δ) + g1−δ

(

1− ϕ−δ

1− ϕ1−δ
+ 1 + βW

))

= βW − g−δβW + βg1−δ 1− ϕ−δ

1− ϕ1−δ
+ βg1−δ + β2g1−δW

gδ = −βW + βg
1− ϕ−δ

1− ϕ1−δ
+ βg + β2gW

If the following system of two equations and two unknowns W and g has a solution,

then the existence of the BGP is shown.

W =
g

1− gβ
(12)

1

β
gδ = −W + g

1− ϕ−δ

1− ϕ1−δ
+ g(1 + βW ) (13)

Eliminating W and solving for the growth rate g yields

g =

(

β
1− ϕ−δ

1− ϕ1−δ

)
1

δ−1

As ϕ goes to zero, then g goes to
(

β δ
δ−1

)
1

δ−1 which is exactly the growth rate in Perla

and Tonetti (2014).

�

The economy’s growth rate g is decreasing in δ, the tail of the productivity distribu-

tion of firms. The fatter the tail, the smaller δ, the higher the growth rate g. The

intuition is straightforward. Growth is led by the imitation of high productive firms by

low productive firms. Thus if the distribution is fatter then the probability for a low

productive firm to imitate a better firm is higher and the growth rate is higher. Figure

4 illustrates the relation between the growth rate and the tail of firms distribution.

2.3 Out of BGP Dynamics under Aggregate Uncertainty

The previous section assumed away any sampling variations arising from a finite number

of firms, which can lead to aggregate uncertainty. With a finite number of firms that

are distributed according to a Pareto distribution along a BGP, Gabaix (2011) shows

18



Figure 4: An illustration of the relation between the tail of the productivity distribution
along a BGP and the growth rate.

that fat tails imply sizable aggregate fluctuations in response to firm-level disturbances.

We now describe the nature and origins of aggregate volatility in our framework.

Figure 5 provides an intuitive illustration. There are only three productivity levels, and

all firms start at the intermediate one. Each firm has probability 1/4 of going up or

down and 1/2 of staying put. The top panel displays the case of a continuum of firms:

at the next period exactly 1/2 of the firms are at intermediate level, 1/4 at top and 1/4

at low level. With a continuum the law of large number holds and there is no sampling

variation. The future distribution of firms is a deterministic object. But if there is

a finite number of firms - say four - then any arrangement of firms among the three

productivity levels is possible with a positive probability. The triplet of the number of

firms at each productivity level follows a multinomial distribution, where the number

of trials is four and the vector of probabilities is(1/4, 1/2, 1/4)′. The future distribution

of firms is a stochastic object. If the distribution of firms is a stochastic object, so are

any aggregate quantities since there will be a moment of that distribution.
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Figure 5: Example of sampling variation in the case of three productivity levels. The
top panel has a continuum of firms, the bottom panel has a finite number of firms.

Firm Problem

The firms’ dynamic problem must take into account the failure of the law of large

numbers. The firm problem becomes

V (s, µt) = Max

{

ϕs + βEt

[

∑

s′

V (s′, µt+1)Ps,s′

]

; βEt

[

∑

s′≥st

V (s′, µt+1)
µs′,t

N − St

]}

The key difference is the expectation operator Et for the future value of firms. The

problem also yields a thresholds rule as above.

{

s < st, V I
t (s) > V E

t (s) the firm decides to imitate

s ≥ st, V I
t (s) ≤ V E

t (s) the firm decides to experiment
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Stochastic Properties of the Productivity Distribution

This Section derives moments of µt+1 conditional on µt. In the case of a finite number

of firms, the evolution of the productivity distribution of firms is described by

µs,t+1 =



















aµs+1,t + bµs,t + cµs−1,t + St
µs,t

N−St
+ εs,t if s > st

aµst+1,t + bµst,t + St
µst,t

N−St
+ εst,t if s = st

aµst,t + εst−1,t if s = st − 1

0 if s < st

where the variance-covariance structure of {εs,t}s is a function of {µs,t}s. The shocks

{εs,t}s are the only difference with the continuum case and make the distribution of

firms {µs,t}s a stochastic object. The rest of this section is dedicated to the description

of this stochastic structure.

Define two vectors for every s and k in {ϕ, . . . , ϕs},

f s,k
t+1 = number of experimenting firms in state s at t+ 1 that were in state k at t

gst+1 = number of imitating firms in state s at t + 1

It is straightforward to show that: µs,t+1 =
∑∞

k=st
f s,k
t+1 + gst+1. Given the structure of P

we know that f s,k
t+1 = 0 for (s, k) /∈ {(s, s− 1), (s, s), (s, s+ 1)} and thus

µs,t+1 = f s,s−1
t+1 + f s,s

t+1 + f s,s+1
t+1 + gst+1

Define µP
s,t+1 = µs,t+1 − gst+1 = f s,s−1

t+1 + f s,s
t+1 + f s,s+1

t+1 the dynamics due only to time t

producers.

The vector f .,k
t+1 = {fk−1,k

t+1 , fk,k
t+1, f

k+1,k
t+1 }′ (size 3 × 1) follows a multinomial distribution

with number of trials µk,t and a variance-covariance matrix W = diag(V )− V V ′ where

V = {a, b, c}′. The f .,k
t+1 are independent for different k. It follows that

Et[µ
P
s,t+1] = cµs−1,t + bµs,t + aµs+1,t

Vart[µ
P
s,t+1] = c(1− c)µs−1,t + b(1 − b)µs,t + a(1− a)µs+1,t
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Let us compute Covt[µ
P
s,t+1, µ

P
k,t+1]. It is clear since the f

.,s
t+1 are independent for different

s and have support {s− 1, s, s+ 1} that Covt[µ
P
s,t+1, µ

P
k,t+1] = 0 for |s− k| > 2. For a

given s, we have

Covt[µ
P
s,t+1, µ

P
s+1,t+1] = Covt

[

f s,s−1
t+1 + f s,s

t+1 + f s,s+1
t+1 , f s+1,s

t+1 + f s+1,s+1
t+1 + f s+1,s+2

t+1

]

= Covt
[

f s,s
t+1, f

s+1,s
t+1

]

+ Covt
[

f s,s+1
t+1 , f s+1,s+1

t+1

]

= −µs,tbc− µs+1,tab

and

Covt[µ
P
s,t+1, µ

P
s+2,t+1] = Covt

[

f s,s−1
t+1 + f s,s

t+1 + f s,s+1
t+1 , f s+2,s+1

t+1 + f s+2,s+2
t+1 + f s+2,s+3

t+1

]

= Covt
[

f s,s+1
t+1 , f s+2,s+1

t+1

]

= −acµs+1,t

This completes the description of the distribution of the random vector µP
t+1.

Focus now on the random vector gt+1 = {gst+1}: it follows a multinomial distribution

with number of trials St (the number of imitating firms) over the support {st, . . . , Smax
t }

where Smax
t is the productivity level of the most productive producing firms at date

t, and with the event probabilities vector µt

N−St
.4. It follows that for a given s, k ∈

[st, . . . , S
max
t ] with k 6= s:

Et

[

gst+1

]

=
St

N − St

µs,t

Vart
[

gst+1

]

= St

µs,t

N − St

(

1− µs,t

N − St

)

Covt
[

gst+1, g
k
t+1

]

= −St

µs,tµk,t

(N − St)2

The vector gt+1 is independent of the vectors f .,s
t+1.

Putting all results together, for s ≥ st+1 and k such that |s − k| > 2, the moments of

4We abuse the notation between the sequence (or the size infinite vector) µt and the vector of size
(Smax

t − st + 1× 1) that stops where µs,t = 0∀s > Smax
t .
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the vector µt+1 are given by:

Et [µs,t+1] = cµs−1,t + bµs,t + aµs+1,t +
St

N − St

µs,t

Vart [µs,t+1] = c(1− c)µs−1,t + b(1− b)µs,t + a(1− a)µs+1,t + St

µs,t

N − St

(

1− µs,t

N − St

)

Covt [µs,t+1, µs+1,t+1] = −µs,tbc− µs+1,tab− St

µs,tµs+1,t

(N − St)2

Covt [µs,t+1, µs+2,t+1] = −µs+1,tac− St

µs,tµs+2,t

(N − St)2

Covt [µs,t+1, µk,t+1] = −St

µs,tµk,t

(N − St)2

Stochastic Properties of Aggregate Output

This section derives the stochastic properties of aggregate output. We first derive the

dynamic process followed by aggregate output, which we use to derive its conditional

variance.

Proposition 4 Out of a Balanced Growth Path, output evolves according to (if st+1 >

st)

Yt+1 = ρYt +
St

N − St

Yt −
(

ρ+
St

N − St

) st+1−1
∑

s=st

ϕsµs,t +OY
t + σtǫt+1 (14)

where ρ = aϕ−1 + b+ cϕ and OY
t = −aϕst+1−1µst+1,t + cϕst+1µst+1−1,t
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Proof: For s > st, the productivity distribution at date t+1 is aµs+1,t+bµs,t+cµs−1,t+

St
µs,t

N−St
. Let us assume that st+1 > st. Aggregate output at date t+ 1 is

Yt+1 =
∞
∑

s=st+1

ϕsµs,t+1

=
∞
∑

s=st+1

ϕs

(

aµs+1,t + bµs,t + cµs−1,t +
St

N − St

µs,t

)

=a
∞
∑

s=st+1

ϕsµs+1,t + b
∞
∑

s=st+1

ϕsµs,t + c
∞
∑

s=st+1

ϕsµs−1,t +
St

N − St

∞
∑

s=st+1

ϕsµs,t

=a
∞
∑

s=st+1+1

ϕs−1µs,t + b
∞
∑

s=st+1

ϕsµs,t + c
∞
∑

s=st+1−1

ϕs+1µs,t +
St

N − St

∞
∑

s=st+1

ϕsµs,t

=
(

aϕ−1 + b+ cϕ
)

∞
∑

s=st+1

ϕsµs,t − aϕst+1−1µst+1,t + cϕst+1µst+1−1,t +
St

N − St

∞
∑

s=st+1

ϕsµs,t

We know that aggregate output at date t is Yt =
∑∞

s=st
ϕsµs,t =

∑st+1−1
s=st

ϕsµs,t +
∑∞

s=st+1
ϕsµs,t. Substitute in the previous equation:

Yt+1 =

(

aϕ−1 + b+ cϕ+
St

N − St

)

(

Yt −
st+1−1
∑

s=st

ϕsµs,t

)

− aϕst+1−1µst+1,t + cϕst+1µst+1−1,t

�

Equation 14 describes the evolution of aggregate output. Yt+1 can be decomposed

in five terms. The first one is the contribution of time t experimenting firms, whose

productivity is subject to the Markovian process. The second term is the contribution

of time t imitating firms. They are producing at time t + 1 and thus contribute to

time t + 1 aggregate output. The third term is the cost of time t + 1 imitation. The

firms that decided to imitate at time t+ 1 are not producing, which reduces aggregate

output at time t + 1. The fourth term is a correction term due to the discrete number

of firms. Finally the last term is the stochastic perturbation on aggregate output due

to idiosyncratic perturbations as described in figure 5.

Equation 14 can be solved for the evolution of output growth:

Yt+1

Yt

= ρ

(
∑∞

s=st+1
ϕsµs,t

Yt

)

+

(

St

N − St

)

(
∑∞

s=st+1
ϕsµs,t

Yt

)

+
OY

t

Yt

+
σt

Yt

ǫt+1
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Output growth responds to two terms: the share of the output of the largest firm
(

∑

∞

s=st+1
ϕsµs,t

Yt

)

, and the ratio of small to large firms. The first term captures persistence:

persistence increases in the output share of large firms. The second term captures

convergence: growth increases in the number of small relative to large firms, conditional

on the output share of large firms. We next characterize the conditional variance of

output growth rate.

Proposition 5 Out of a Balanced Growth Path, the conditional variance of the output

growth is

σ2
t

Y 2
t

= Vart

[

Yt+1

Yt

]

= ̺

∑

s=st+1
ϕ2sµs,t

Y 2
t

+ St

Vari∈Pt [ϕsi,t ]

Y 2
t

+
Oσ

t

Y 2
t

(15)

where Pt is the set of large firms (si,t > st+1) at t and ̺ = aϕ−2 + b+ cϕ2 − ρ2.

Proof: See Appendix A.1. �

The first term on the right hand side of equation 15 is akin to Carvalho and Grassi

(2015). Aggregate volatility increases in the dispersion among large firms - measured

by the second moment of the cross-sectional distribution of large firms - because (ex-

perimenting) large firms create persistence. The second term is due to imitating firms:

volatility also increases in the dispersion of large firms because this dispersion captures

the potential churning created by (imitating) small firms. The intuition becomes clearer

if the second term is rewritten as

St

Y 2
t

Vari∈Pt [ϕsi,t ] =
St

N − St

∑

s=st+1
ϕ2sµs,t

Y 2
t

− St

(N − St)2

(
∑

s=st+1
ϕsµs,t

Yt

)2

Where the dispersion of large firms
∑

s=st+1
ϕ2sµs,t

Y 2
t

now enters specifically.

The following proposition describe how each term of equation 15 evolves as the number

of firms N increases along a BGP.

Proposition 6 Along a BGP with a finite number of firms, when N → ∞:

(

̺+
St

N − St

)

∑

s=st+1
ϕ2sµs,t

Y 2
t

∼
N→∞

K1

N2(1− 1
δ
)
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and

St

(N − St)2

(
∑

s=st+1
ϕsµs,t

Yt

)2

∼
N→∞

K2

N

When 1 < δ < 2 (fat tail distribution) then 2(1− 1
δ
) < 1, which implies

σt

Yt

=

√

Vart

[

Yt+1

Yt

]

∼
N→∞

√
K1

N1− 1
δ

(16)

Proof: See Appendix A.1. �

This result is related to Gabaix (2011) and Carvalho and Grassi (2015). In the thin

tail case aggregate volatility decays at rate 1/
√
N , i.e., faster than 1/N1− 1

δ for 1 <

δ < 2. Therefore, aggregate volatility arising from pure idiosyncratic shocks can be

quantitatively important.

Equation 16 is an approximation when the number of firms is large; it defines a negative

relation between output growth volatility and the tail index δ of the distribution of firms

along a BGP. A tail index of the distribution of firm determines both aggregate volatility

and the long term growth rate of output. A fat productivity distribution of firm, i.e. a

low tail index, implies both high aggregate volatility and high long term growth rate.

3 Growth, Volatility and Firm Size Distribution

In this section, we are testing the relationship between the fatness of the firm size

distribution, a proxy for the distribution of firms across productivity levels and the

long term output growth and the volatility of the output growth rate. We are first

describing the data sources before moving to the main results. We then describe how

sectoral tails are estimated on firm-level data. We investigate the link between sectoral

growth and sectoral tail, and perform some robustness check. Finally, we study the link

between sectoral volatility and sectoral tail, also with some robustness checks.
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3.1 Data Description

In the empirical part of this paper, we use two sources of information: i) firm-level

data collected by Compustat, and ii) sector-level data, collected by the NBER-CES

Manufacturing Industry Database. The first database is used to estimate tails at sector

level; the second database is used to compute sectoral growth and volatility. The rest

of this section is dedicated to the description of these data.

Firm Level Data

Compustat data are collected from the mandatory forms that each listed firm in the US

fills each year. This is a firm-level yearly panel database with balance sheet informa-

tion. For each 4-digit SIC category, we collect three variables between 1958 and 2009:

employment, sales and total assets. The latter two are nominal. They are deflated

using the price deflator given by the NBER-CES Manufacturing Industry Database for

shipment (PISHIP). These deflators are computed by the Bureau of Economic Analysis,

for their GDP-by-Industry data.

Sector Level Data

The NBER-CES Manufacturing Industry Database collects sector-level data. The ma-

jority of these data are extracts from the Annual Survey of Manufacturing that samples

approximatively 50,000 establishments selected from the approximatively 330,000 es-

tablishments included in the Census of Manufacturing. The variables are only available

for the manufacturing sector. The data are annual and cover the period 1958-20095. For

each 4-digit SIC category, we use information on sales (VSHIP), total factor productiv-

ity (TFP), and employment. Sales are deflated following the method recommended by

the NBER using the provided associated deflator (PISHIP). For the TFP we use the

5-factor TFP index (TFP5) computed by the NBER.

Armed with these variables, we compute the growth rate of sales and TFP. For robust-

ness, we also filter the data using the Hodrick-Prescott filter (with smoothing parameter

100). We compute mean growth rate and variance, on a centered rolling window of 11

years. For example, the mean growth rate in 1985 is the mean of the growth rates

of years 1980 to 1991. These mean are interpreted as long-term growth rate along a

SBGP.

5Both 6-digits NAICS and 4-digit SIC level data are available. For consistency, we use the 4-digit
SIC information.
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3.2 Estimation of Tails

The tails of the sector-level size distributions are estimated following Clauset, Shalizi

and Newman (2009). This uses a maximum likelihood estimator related to Hill (1975),

in order to estimate the tail parameter of a distribution. Importantly, the method also

allows to estimate the threshold above which the distribution can be well described by

a Pareto distribution.

Traditionally, tail indexes are estimated using an OLS regression of firms’ log-rank on

their log-size, for firms larger than a arbitrarily chosen threshold.6 While convenient,

the arbitrariness of the threshold is a drawback. A higher threshold increases the fit

of the truncated distribution to a Pareto, but it also reduces the sample of firms that

are used in the regression. Clauset, Shalizi and Newman (2009) estimate the threshold

from the data, where is is chosen optimally so that the fit of the truncated distribution

to a Pareto is maximized.

Firm size is measured using sales, employment or total assets. Compustat data imply

too few firms in a given sector and in a given to perform the Clauset, Shalizi and

Newman (2009) estimation. We pool firms in a given sector over a centered 11 years

rolling window. For example, the tail of the firm size distribution in sector 2011 (Meat

Packing Plants) in 1985 is estimated on the sample formed firms in that sectors in

years 1980 to 1991. The window length is the same as what was used to compute mean

growth rate and volatility.

We obtain a panel formed by the estimated tails of firm size distribution, at the sec-

tor and year levels. The sample is winsorized , and we keep sector year observations

with tails that are estimated on at least 20 firms, and where the estimated tails are

statistically different from zero at a 5 percent confidence level.

Figure 6 displays the density of the pooled panel of estimated tails, using sales, em-

ployment and total assets as a measure of firm size. There is considerable sector-level

heterogeneity in tail estimates, but the mass of estimates is below one irrespective how

firm size is measured. A tail parameter below one means that, at least at the right tail,

sector-level size distributions follow a Zipf law. Therefore, a majority of sectors have a

size distribution fatter than Zipf law. They are highly concentrated sectors. Of course

Compustat data are not representative as they consider listed firms only. They tend to

be larger. But Compustat is presumably representative of large firms, i.e. firms at the

right end of the firm size distribution, which is the basis for these estimations.

6See Gabaix and Ibragimov (2011) for example.
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Figure 6: Density of the panel of distribution tails estimates of sector*year. Data:

Compustat. Method: following Clauset, Shalizi and Newman (2009).

Sales Employment Assets
Mean 1.11 1.13 1.05
Std. 0.67 0.71 0.62
Min 0.23 0.25 0.19
Max 3.40 3.62 3.31
Mean # firms 105.42 123.02 112.42
Std. # firms 114.11 148.20 135.59
Min # firms 21 21 21
Max # firms 1144 1321 1398
Observations 2391 2152 2311

Table 1: Descriptive statistics on the tails estimates of a panel of sector.
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Figure 7: Scatter plot of mean growth rate of sales (y-axis) and tail estimates for sales
(x-axis) for sector year observations.

Table 1 displays summary statistics for the panel of estimated tails. On average, tail

estimates are close to, but above one. Given figure 6, this is consistent with right skew-

ness. The bottom panel of the table reports descriptive statistics for the number of

firms in each sector for which the tail index is estimated. This number is endogenously

determined by the estimation. Since observations are dropped whenever tails are esti-

mated on fewer than 20 firms, the minimum number of firms is 21 for all measures of

size. The mean number of firms goes from 105.42 to 123.02 depending on the measure

of firm size considered. The number of sector year observations is above 2,150.

3.3 Tail and Growth

This sub-section documents the empirical link between long-term growth and the tail

of firm size distribution, δ, both at sector level. Theory suggests the link should be

negative. Figure 7 displays a scatter of the mean growth rate of sales against the

corresponding estimated tail, across sectors and years. The figure suggests a negative

relationship.
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(1) (2) (3) (4) (5) (6) (7) (8)
ln(gr.y) ln(gr.y) ln(gr.y) ln(gr.y) ln(gr.y) ln(gr.y) ln(gr.y) ln(gr.y)

ln(1 + δ sale) -0.0467*** 0.0109 -0.0511*** 0.00395 -0.0485*** 0.00952 -0.0542*** -0.000873
(0.0154) (0.0108) (0.0157) (0.0101) (0.0156) (0.0116) (0.0162) (0.0101)

Employment 0.0000422 0.0000629 0.0000389 0.000102
(0.000172) (0.000113) (0.000177) (0.000104)

Observations 2115 2115 2115 2115 1917 1917 1917 1917
Adjusted R2 0.035 0.002 0.055 0.129 0.041 0.003 0.069 0.142
FE year No No Yes Yes No No Yes Yes
FE sector No Yes No Yes No Yes No Yes

Robust standard errors clustered at the sector level in parenthesis
***p<0.01, **p<0.05, *p<0.1

Table 2: Baseline specification for growth and tail relationship.

To test the prediction formally, we estimate the following model:

log(1 + growtht,s) = κ+ sectors + yeart + β log(1 + tailt,s) + γXt,s + ǫt,s (17)

κ is a constant, yeart is a time effect, sectors is a sector fixed effect and Xt,s is a set

of controls. The estimations are performed with and without time and/or sector fixed

effect. The coefficient β is expected to be negative. In the baseline specification, it is

the mean growth rate of sales at the 4-digit SIC level that measures growtht,s. We also

control for the size of the sector, as measured by the total number of employees there.

Table 2 reports the result. Columns (1) to (4) display the result without control at

the sectoral level, columns (5) to (8) include sector-level employment. The negative

relation between long-term growth and the tail index is statistically significant and

negative in the absence of sector fixed effects, whether year effects are controled for

or not. Estimates of β become insignificant once sector fixed effects are added. In

the cross section of sectors, fat tails are associated with high growth. But over time,

fluctuations within-sector in the tail of size distribution are not associated with any

difference in growth. This latter results is consistent with the above theory. Indeed, the

results derive in Proposition 3 is valide along a BGP and thus our theory only predict

that this relation holds between sectors.

3.4 Tail and Volatility

This section analyzes the empirical relationship between volatility and tail indexes, both

at sector level. Theory suggests the link should be negative.
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Figure 8: Scatter plot of variance of growth rate of sales (y-axis) and tail estimates
(x-axis) for sales for sector year observations.

Figure 8 displays a scatter of the variance in the growth rate of sales against the

estimates of the tail index, across both sectors and years. The figure suggests a negative

relation.

To test this prediction formally, we estimate the following empirical model:

volt,s = κ + sectors + yeart + β(1 + tailt,s) + γNt,s + ǫt,s (18)

Once again, κ is a constant, yeart is a time-fixed effect, sectors is a sector fixed effect,

volt,s is a measure of sectoral volatility, tailt,s a measure of the tail index, and Nt,s a

measure of the number of firms in a given sector and a given year. We expect the

estimate of β to be negative as it is in the equation 16. In this equation the sign of γ

remains indeterminate.

In the baseline specification of the model 18, we use the 11-year rolling window variance

of sector-level growth rate as a measure of sectoral volatility, volt,s. The total number

of employees is a proxy for the number of firms.

Table 3 displays the results for the baseline specification. Columns (5) to (8) include a

control for the number of firms in a sector, whereas columns (1) to (4) do not. The table
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(1) (2) (3) (4) (5) (6) (7) (8)
Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y)

1 + δ sale -0.00387*** -0.00334*** -0.00408*** -0.00379*** -0.00386*** -0.00306*** -0.00413*** -0.00368***
(0.000785) (0.00101) (0.000795) (0.000865) (0.000687) (0.00116) (0.000700) (0.00106)

Employment -0.0000350* -0.00000848 -0.0000386* -0.0000106
(0.0000197) (0.0000218) (0.0000199) (0.0000251)

Observations 1817 1817 1817 1817 1649 1649 1649 1649
Adjusted R2 0.046 0.040 0.077 0.148 0.058 0.035 0.085 0.117
FE year No No Yes Yes No No Yes Yes
FE sector No Yes No Yes No Yes No Yes

Robust standard errors clustered at the sector level in parenthesis

***p<0.01, **p<0.05, *p<0.1

Table 3: Baseline specification for volatility and tail relationship (model 18)

shows that the negative relationship between volatility and the tail index is statistically

different from zero and robust to the introduction of sectoral and time fixed effects.

Furthermore, including the total number of employees barely affects estimates of β.

The estimated value for γ is barely significant at 10 percent confidence level across

specifications.

The fact that estimates of β are negative and statistically significant irrespective of fixed

effects means the relation between sector volatility and tails holds both between and

within sectors. The former is consistent with the model derived in the revious section.

In the model, volatility decreases with the tail of the stationary firm size distribution

along a BGP: the correlation is negative between sectors. In other words the model

predict a between sectors negative relationship between volatility and tail index.

But the fact that the estimate of β is negative and statistically significant also with

sector fixed effects also implies a negative correlation within sector. The intuition is that

when large firms, i.e firms with good ideas, experiment higher idiosyncratic shocks, these

firms become larger. Hence the firm size distribution becomes fatter and the volatility

is higher: the negative (resp. positive) relation between tail index (resp. tail fatness)

and sector volatility holds also within sectors.

To ensure robustness, we considere other specifications. We use tail indexes estimated

on firm employment and total assets, and use other measures of sector volatility based

on TFP, or HP-filtered data instead of growth rates. The results are presented in

appendix B Table 5 shows the negative significance of β prevails in all cases. Finally,

table 6 displays the results for clustered standard errors in alternative dimensions. The

results are once again robust.

33



3.5 Tails and the Growth-Volatility Relation

The framework presented in section 2 rationalizes the existence of a positive relationship

between the tail indexes and both sectoral growth and volatility. This implies the

dispersion in tail indexes can account for at least a fraction of the positive relation

between growth and volatility. In this section, we investigate how large a fraction.

We proceed in two steps. First, the cross-section of sectoral volatility is regressed on

the estimated tail indexes. We then explore how much of the dispersion in sector

growth rates can be explained by the fitted values of sector volatilities, explained by

tail indexes only. Since the tails explain only long run differences in sector-level growth,

the regressions include time effects only.

(IV) (non IV)
gr.y gr.y

Var(gr.y) 3.488*** 1.806***
(0.757) (0.248)

Observations 1817 1817
R2 0.120 0.297
FE year Yes Yes
FE sector No No

Robust standard errors clustered at the sector level in parenthesis
***p<0.01, **p<0.05, *p<0.1

Table 4: IV vs non IV estimation of Growth and Volatility relationship

Table 4 compares the result of this regression (column (IV)) with one that simply re-

gresses sector growth on its volatility (column (non-IV)). Sectoral volatility is measured

by the variance of the sales growth rates, while sectoral growth is its mean, both com-

puted on 11-year rolling windows. The dispersion in sectoral volatility can account for

about 29 percent of sectoral growth. When volatility is instrumented by tail indexes, it

can still account for about 12 percent of sectoral growth. Therefore, tail indexes explain

about 40% of the growth-volatility relationship between sectors.

4 Conclusion

This paper develops a sector-level analysis of the relation between the distribution of

firms, growth, and volatility. We develop an ”idea flows” model where firms can either
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imitate existing technologies (a risky strategy), or experiment with new, random tech-

nologies (a conservative strategy). In equilibrium only relatively large firms experiment,

which engenders an expanding technology frontier. Small firms tend to imitate, which,

provided a few large firms are in existence, generates sector risk, growth, and volatility.

The implied relation between growth, volatility, and the share of large firms holds in

US sector data.

We embed our theory in an aggregate model of structural transformation. The model

can account for the consequences of aggregation on the growth-volatility link, provided

one assumes goods are substitutes between granular sectors, but complements at a more

aggregate level. A six-digit ”sector” is an aggregate of substitutable goods; both growth

and volatility in that sector reflect the characteristics of high technology firms, since

they command most factors of production. But a one-digit ”sector” is an aggregate

of complements; both growth and volatility now reflect the features of low technology

firms, which constitute the bulk of the factors of production. The direct implication is

that growth, volatility, and the distribution of firms should stop correlating as the data

are aggregated. The prediction is borne out in US data.
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A Proofs

A.1 Proof of Proposition 5

By definition Yt+1 =
∑∞

s=st+1
ϕsµs,t+1 and µs,t+1 = f s,s−1

t+1 + f s,s
t+1 + f s,s+1

t+1 + gst+1 for

s ≥ st+1
7. It follows:

7Note that there are no infinite sum here, since there are a finite number of firms and thus µs,t+1 = 0
for s large enough. The summations in the text converge.
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Vart[Yt+1] = Vart

[

∞
∑

s=st+1

ϕsµs,t+1

]

=
∞
∑

s=st+1

Vart [ϕ
sµs,t+1] + 2

∑∑

st+1≤s<k≤∞

Covt
[

ϕsµs,t+1, ϕ
kµk,t+1

]

=
∞
∑

s=st+1

ϕ2s

(

c(1− c)µs−1,t + b(1 − b)µs,t + a(1− a)µs+1,t + St

µs,t

N − St

(

1− µs,t

N − St

))

+ . . .

. . .+ 2
∑∑

st+1≤s<k≤∞

ϕsϕk
Covt

[

µP
s,t+1 + gst+1, µ

P
k,t+1 + gkt+1

]

=

∞
∑

s=st+1

ϕ2s

(

c(1− c)µs−1,t + b(1 − b)µs,t + a(1− a)µs+1,t + St

µs,t

N − St

(

1− µs,t

N − St

))

+ . . .

. . .+ 2
∑∑

st+1≤s<k≤∞

ϕsϕk
Covt

[

µP
s,t+1, µ

P
k,t+1

]

+ . . .

. . .+ 2
∑∑

st+1≤s<k≤∞

ϕsϕk
Covt

[

gst+1, g
k
t+1

]

=

∞
∑

s=st+1

ϕ2s

(

c(1− c)µs−1,t + b(1 − b)µs,t + a(1− a)µs+1,t + St

µs,t

N − St

(

1− µs,t

N − St

))

+ . . .

. . .+ 2

∞
∑

s=st+1

ϕ2s+1
Covt

[

µP
s,t+1, µ

P
s+1,t+1

]

+ ϕ2s+2
Covt

[

µP
s,t+1, µ

P
s+2,t+1

]

. . .

. . .− 2St

(N − St)2

∑∑

st+1≤s<k≤∞

ϕsϕkµs,tµk,t

=

∞
∑

s=st+1

ϕ2s

(

c(1− c)µs−1,t + b(1 − b)µs,t + a(1− a)µs+1,t + St

µs,t

N − St

(

1− µs,t

N − St

))

+ . . .

. . .+ 2

∞
∑

s=st+1

ϕ2s (−µs,tbc− µs+1,tab) + ϕ2s+1 (−acµs+1,t) . . .

. . .− 2St

(N − St)2

∑∑

st+1≤s<k≤∞

ϕsϕkµs,tµk,t

=
∞
∑

s=st+1

ϕ2s (c(1− c)µs−1,t + b(1− b)µs,t + a(1− a)µs+1,t) + . . .

. . .+ 2
∞
∑

s=st+1

ϕ2s+1 (−µs,tbc− µs+1,tab) + ϕ2s+2 (−acµs+1,t) + . . .

. . .+
∞
∑

s=st+1

ϕ2sSt

µs,t

N − St

(

1− µs,t

N − St

)

− 2St

(N − St)2

∑∑

st+1≤s<k≤∞

ϕsϕkµs,tµk,t
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Focus on the first term

Smax
t+1
∑

s=st+1

ϕ2s (c(1− c)µs−1,t + b(1− b)µs,t + a(1− a)µs+1,t)

=c(1− c)

Smax
t+1
∑

s=st+1

ϕ2sµs−1,t + b(1− b)

Smax
t+1
∑

s=st+1

ϕ2sµs,t + a(1− a)

Smax
t+1
∑

s=st+1

ϕ2sµs+1,t

=c(1− c)

Smax
t+1 −1
∑

s=st+1−1

ϕ2s+2µs,t + b(1− b)

Smax
t+1
∑

s=st+1

ϕ2sµs,t + a(1 − a)

Smax
t+1 +1
∑

s=st+1+1

ϕ2s−2µs,t

=
(

c(1− c)ϕ2 + b(1− b) + a(1− a)ϕ−2
)

Smax
t+1
∑

s=st+1

ϕ2sµs,t + c(1− c)ϕ2
(

ϕ2(st+1−1)µst+1−1,t − ϕ2(Smax
t+1 )µSmax

t+1
,t

)

+ . . .

. . .+ a(1 − a)ϕ−2
(

ϕ2(Smax
t+1 +1)µSmax

t+1
+1,t − ϕ2st+1µst+1,t

)

Focus now on the second term

2

Smax
t+1
∑

s=st+1

ϕ2s+1 (−µs,tbc− µs+1,tab) + ϕ2s+2 (−acµs+1,t)

=2



−bc

Smax
t+1
∑

s=st+1

ϕ2s+1µs,t − ab

Smax
t+1
∑

s=st+1

ϕ2s+1µs+1,t − ac

Smax
t+1
∑

s=st+1

ϕ2s+2µs+1,t





=− 2



bcϕ

Smax
t+1
∑

s=st+1

ϕ2sµs,t + abϕ−1

Smax
t+1 +1
∑

s=st+1+1

ϕ2sµs,t + ac

Smax
t+1 +1
∑

s=st+1+1

ϕ2sµs,t





=− 2
(

bcϕ+ ac+ abϕ−1
)

Smax
t+1
∑

s=st+1

ϕ2sµs,t − 2abϕ−1
(

ϕ2(Smax
t+1 +1)µSmax

t+1
+1,t − ϕ2(st+1+1)µst+1+1,t

)

+ . . .

. . .− 2ac
(

ϕ2(Smax
t+1 +1)µSmax

t+1
+1,t − ϕ2(st+1+1)µst+1+1,t

)

It follows that

Vart[Yt+1] =
(

c(1− c)ϕ2 + b(1− b) + a(1− a)ϕ−2 − 2
(

bcϕ+ ac+ abϕ−1
))

Smax
t+1
∑

s=st+1

ϕ2sµs,t + . . .

. . .+

∞
∑

s=st+1

ϕ2sSt

µs,t

N − St

(

1− µs,t

N − St

)

− 2St

(N − St)2

∑∑

st+1≤s<k≤∞

ϕsϕkµs,tµk,t + . . .

. . .+ c(1− c)ϕ2
(

ϕ2(st+1−1)µst+1−1,t − ϕ2(Smax
t+1 )µSmax

t+1
,t

)

+ a(1 − a)ϕ−2
(

ϕ2(Smax
t+1 +1)µSmax

t+1
+1,t − ϕ2st+1µst+1,t

)

.

. . .− 2abϕ−1
(

ϕ2(Smax
t+1 +1)µSmax

t+1
+1,t − ϕ2(st+1+1)µst+1+1,t

)

− 2ac
(

ϕ2(Smax
t+1 +1)µSmax

t+1
+1,t − ϕ2(st+1+1)µst+1+1,t

)
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Note that ̺ = c(1−c)ϕ2+b(1−b)+a(1−a)ϕ−2−2 (bcϕ+ ac + abϕ−1) = aϕ−2+b+cϕ2−
ρ2. DefineDt =

∑∞

s=st
ϕ2sµs,t the second moment of the firm size distribution, and Oσ

t =

c(1−c)ϕ2
(

ϕ2(st+1−1)µst+1−1,t − ϕ2(Smax
t+1 )µSmax

t+1 ,t

)

+a(1−a)ϕ−2
(

ϕ2(Smax
t+1 +1)µSmax

t+1 +1,t − ϕ2st+1µst+1,t

)

−

2abϕ−1
(

ϕ2(Smax
t+1 +1)µSmax

t+1 +1,t − ϕ2(st+1+1)µst+1+1,t

)

−2ac
(

ϕ2(Smax
t+1 +1)µSmax

t+1 +1,t − ϕ2(st+1+1)µst+1+1,t

)

a term due to the discrete grid. The volatility of the growth rate of output becomes:

Vart

[

Yt+1

Yt

]

= ̺





∑∞
s=st+1

ϕ2sµs,t

Y 2
t



 +
Oσ

t

Y 2
t

+
St

(N − St)2







∞
∑

s=st+1

ϕ2sµs,t

Y 2
t

(

N − St − µs,t

)

− 2
∑∑

st+1≤s<k≤∞

ϕsϕkµs,tµk,t

Y 2
t







(19)

�

41



B Robustness Checks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.tfp) Var(gr.tfp) Var(gr.tfp) Var(gr.tfp) Var(HPgr.y) Var(HPgr.y) Var(HPgr.y) Var(HPgr.y)

1 + δ emp -0.00316*** -0.00208* -0.00335*** -0.00225** -0.00535*** -0.00106 -0.00553*** -0.00142*
(0.000741) (0.00106) (0.000729) (0.000987) (0.00152) (0.000863) (0.00157) (0.000847)

1 + δ asset -0.000759*** -0.000433*** -0.000682*** -0.000358**
(0.000145) (0.000141) (0.000149) (0.000159)

Employment -0.0000325 -0.0000153 -0.0000347* -0.0000126 -0.00000745 -0.00000413 -0.00000791* -0.00000613 -0.0000529 -0.000234** -0.0000513 -0.000207***
(0.0000204) (0.0000234) (0.0000209) (0.0000276) (0.00000469) (0.00000815) (0.00000472) (0.00000802) (0.0000346) (0.0000950) (0.0000360) (0.0000767)

Observations 1491 1491 1491 1491 1607 1607 1607 1607 1784 1784 1784 1784

Adjusted R2 0.046 0.018 0.053 0.069 0.050 0.014 0.082 0.074 0.034 0.051 0.045 0.063
FE year No No Yes Yes No No Yes Yes No No Yes Yes
FE sector No Yes No Yes No Yes No Yes No Yes No Yes

Robust standard errors clustered at the sector level in parenthesis
***p<0.01, **p<0.05, *p<0.1

Table 5: Other specification for sectoral volatility and tail relationship

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y) Var(gr.y)

1 + δ sale -0.00386*** -0.00306*** -0.00413*** -0.00368*** -0.00386*** -0.00306*** -0.00413*** -0.00368*** -0.00386*** -0.00306*** -0.00413*** -0.00368***
(0.000687) (0.00116) (0.000700) (0.00106) (0.000327) (0.000311) (0.000358) (0.000322) (0.000687) (0.00116) (0.000777) (0.00108)

Employment -0.0000350* -0.00000848 -0.0000386* -0.0000106 -0.0000350*** -0.00000848 -0.0000386*** -0.0000106 -0.0000350* -0.00000848 -0.0000386* -0.0000106
(0.0000197) (0.0000218) (0.0000199) (0.0000251) (0.00000666) (0.0000121) (0.00000713) (0.0000128) (0.0000195) (0.0000238) (0.0000231) (0.0000275)

Observations 1649 1649 1649 1649 1649 1649 1649 1649 1649 1649 1649 1649

Adjusted R2 0.058 0.035 0.085 0.117 0.059 0.606 0.109 0.648 0.059 0.606 0.109 0.648
FE year No No Yes Yes No No Yes Yes No No Yes Yes
FE sector No Yes No Yes No Yes No Yes No Yes No Yes

Robust standard errors clustered at the sector level in parenthesis
***p<0.01, **p<0.05, *p<0.1

Table 6: Different clustering for sectoral volatility and tail relationship
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