Quasi-hyperbolic discounting and the taxation of capital income

Jungyeoun Lee Gareth D. Myles

University of Exeter

January 2016

Jungyeoun Lee, Gareth D. Myles (University (

Discounting and capital

January 2016 1 / 25

- The paper considers the implications of quasi-hyperbolic preferences for capital taxation
- It builds on two observations:
 - That quasi-hyperbolic preferences lead to "under-saving" so justify intervention
 - That the Chamley-Judd result demonstrates captial should not be taxed
- The quasi-hyperbolic preferences are embedded within a Ramsey growth model and an overlapping generations model

- The Mirrlees Review placed considerable emphasis on the tax treatment of capital income
- The motive for this were a set of *equivalence results*: a consumption tax is equivalent to an income tax with exemption for interest income
- These results are based on budgets, not preferences
- This reduces the relevant policy choices to:
 - A comprehensive income tax
 - A tax on labour income with tax exemption for capital income
 - A tax on labour income with a tax at a different rate on capital income
- Chamley-Judd supports the second option in Ramsey growth models

- The first section introduces the different choice problems for quasi-hyperbolic preferences
- The choice problems are then explored for log utility and a fixed wealth level
- The Ramsey growth model with quasi-hyperbolic preferences is then analyzed
 - Existing conclusions are not changed
- Taxation is then considered in an overlapping generations economy
 - A capital tax can have a role

• We deal with the class of preferences described by

$$U = u(c_0) + \beta \delta u(c_1) + \beta \delta^2 u(c_2) + \ldots + \beta \delta^T u(c_T)$$

- With these can define three different types of consumer:
- Commited: $\{c_0, \ldots, c_T\}$ chosen at 0
- Naive: $\{c_0, \ldots, c_T\}$ chosen at 0, $\{c_1, \ldots, c_T\}$ chosen at 1, ...
- Sophisticated: {c₀,..., c_T} chosen at 0 taking into account actions of future selves
- Each type of consumer generates a different growth path

• For the naive consumer with a T period lifetime

$$s_{T-1} = \frac{\beta \delta}{1+\beta \delta} W_{T-1}, ..., s_{T-2} = \frac{\beta \left[\delta + \delta^2\right]}{1+\beta \left[\delta + \delta^2\right]} W_{T-2},$$

$$s_0 = \frac{\beta \sum_{i=1}^T \delta^i}{1+\beta \sum_{j=1}^T \delta^j} W_0$$

• As $T \to \infty$

$$s_0
ightarrow rac{eta rac{\delta}{1-\delta}}{1+eta rac{\delta}{1-\delta}} W_0, \ \ s_t
ightarrow rac{eta rac{\delta}{1-\delta}}{1+eta rac{\delta}{1-\delta}} W_t$$

Image: Image:

- A 🖃

Jungyeoun Lee, Gareth D. Myles (University (

Log utility

• For an exponential consumer with discount factor $\tilde{\delta}$

$$s_{T-1} = \frac{\tilde{\delta}}{1+\tilde{\delta}} W_{T-1}, \ s_{T-2} = \frac{\tilde{\delta}+\tilde{\delta}^2}{1+\tilde{\delta}+\tilde{\delta}^2} W_{T-2}, \ s_0 = \frac{\sum_{i=1}^T \tilde{\delta}^i}{1+\sum_{j=1}^T \tilde{\delta}^j} W_0$$

• So as
$$T \to \infty$$

$$s_0
ightarrow rac{ ilde{\delta}}{1- ilde{\delta}} W_0$$
, $s_t
ightarrow rac{ ilde{\delta}}{1- ilde{\delta}} W_t$

• Naive and exponential are identical if

$$ilde{\delta} = rac{eta}{rac{1}{\delta} - 1 + eta}$$

Jungyeoun Lee, Gareth D. Myles (University (

- Consider a Ramsey growth model with quasi-hyperbolic preferences
- The preferences affect the growth path when the economy is finite
- To illustrate this assume a three-period economy with CRRA utility

$$U=\frac{c_0^{1-\gamma}-1}{1-\gamma}+\beta\delta\frac{c_1^{1-\gamma}-1}{1-\gamma}+\beta\delta^2\frac{c_2^{1-\gamma}-1}{1-\gamma}$$

• And the standard production function

$$y_t = Ak_t^{\alpha}, \quad 0 < \alpha < 1.$$

• The outcomes for Committed and Sophisticated consumers are shown in the table

$egin{array}{c} eta = 0.9 \end{array}$					eta=0.5				
	Committed		Sophisticated			Committed		Sophisticated	
γ	k_1	k_2	k_1^*	k_2^*	γ	k_1	k_2	k_1^*	k_2^*
0.5	1.631	0.589	1.631	0.529	0.5	1.631	0.589	1.631	0.529
1.0	3.068	0.763	3.068	0.705	1.0	3.068	0.763	3.068	0.705
1.5	4.253	0.931	4.253	0.876	1.5	4.253	0.931	4.253	0.876
2.0	5.082	1.066	5.082	1.015	2.0	5.082	1.066	5.082	1.015
2.5	5.650	1.168	5.651	1.123	2.5	5.650	1.168	5.651	1.123
3.0	6.050	1.247	6.051	1.206	3.0	6.050	1.247	6.051	1.206
3.5	6.342	1.309	6.342	1.272	3.5	6.342	1.309	6.342	1.272

Log utility

- The behaviour in an infinite economy can be illustrated by using log utility
- With *T* periods the objective function is

$$U = \ln(Ak_0^{\alpha} - k_1) + \beta \sum_{t=1}^{T} \delta^t \ln(Ak_t^{\alpha} - k_{t+1}), \ k_T = 0$$

• The solution for the Commited consumer can be written as

$$k_1 = \frac{\beta \sum_{i=1}^T \alpha^i \delta^i}{1 + \beta \sum_{i=1}^T \alpha^i \delta^i} A k_0^{\alpha}$$

• And for 1 < t < T - 1

$$k_t = \frac{\sum_{i=1}^{T+1-t} \alpha^i \delta^i}{1 + \sum_{i=1}^{T+1-t} \alpha^i \delta^i} A k_{t-1}^{\alpha}$$

- The solution of the Naive is a repetition of the first period for the committed
- This gives directly

$$k_t = \frac{\beta \sum_{i=1}^{T-t+1} \alpha^i \delta^i}{1 + \beta \sum_{i=1}^{T-t+1} \alpha^i \delta^i} A k_{t-1}^{\alpha}$$

- It can be seen directly that the path for the Committed and the Naive differ
- The question is whether this gives a motive for taxation
- In a finite economy the answer is clearly yes
- But what if the economy is infinite?

Limit behaviour

- Consider the economy with the Naive consumer
- The process for capital is

$$k_t = \frac{\beta \sum_{i=1}^{T-t+1} \alpha^i \delta^i}{1 + \beta \sum_{i=1}^{T-t+1} \alpha^i \delta^i} A k_{t-1}^{\alpha}$$

• In the limit as $T \to \infty$,

$$k_t = rac{eta rac{lpha \delta}{1-lpha \delta}}{1+eta rac{lpha \delta}{1-lpha \delta}} A k_{t-1}^lpha$$

- Observe that this is again the choice of an exponential consumer discounting at $\tilde{\delta} = \frac{\beta}{rac{1}{\delta} 1 + \beta}$
- The logic of Chamley-Judd will apply to this economy (care needed in interpretation!)

- The effect of quasi-hyperbolic preferences is not significant when life is infinite
- This suggests that an analysis of tax policy should focus on a model with finite life
- The natural setting is then an overlapping generations economy
- This ensures the effect of the present-bias is continually present
- We now construct an overlapping generations economy with quasi-hyperbolic preferences

- Each consumer lives for three periods
- They work when young and when middle-aged
- One unit of labour is supplied in each period of working life
- They are retired when old
- The path of saving is chosen with quasi-hyperbolic preferences
- All markets are competitive

Committed

• The Committed consumer faces the optimization

$$U_t = \ln(w_t - s_t^t) + \beta \delta \ln(w_{t+1} + [1 + r_{t+1}] s_t^t - s_{t+1}^t) \\ + \beta \delta^2 \ln([1 + r_{t+2}] s_{t+1}^t)$$

The solution is

$$s_{t}^{t} = \frac{[1 + r_{t+1}] w_{t} [\beta \delta + \beta \delta^{2}] - w_{t+1}}{[1 + r_{t+1}] [1 + \beta \delta + \beta \delta^{2}]}$$

$$s_{t+1}^{t} = \frac{\beta \delta^{2} [[1 + r_{t+1}] w_{t} + w_{t+1}]}{1 + \beta \delta + \beta \delta^{2}}$$

• The time path for capital is governed by

$$k_{t} = \frac{\beta \delta^{2} \left[\left[1 + r_{t-1} \right] w_{t-2} + w_{t-1} \right]}{1 + \beta \delta + \beta \delta^{2}} + \frac{\left[1 + r_{t} \right] w_{t-1} \left[\beta \delta + \beta \delta^{2} \right] - w_{t}}{\left[1 + r_{t} \right] \left[1 + \beta \delta + \beta \delta^{2} \right]}$$

Naive

The first-period solution for the Naive is the same as the Committed
In the second period (with s^t_t given)

$$\max_{\{s_{t+1}^t\}} U_t = \ln(w_{t+1} + [1 + r_{t+1}] s_t^t - s_{t+1}^t) + \beta \delta \ln([1 + r_{t+2}] s_{t+1}^t)$$

• This provides the solution

$$s_{t+1}^{t} = \left(rac{eta\delta}{1+eta\delta}
ight) \left(rac{eta\delta+eta\delta^2}{1+eta\delta+eta\delta^2}
ight) \left[\left[1+r_{t+1}
ight]w_t+w_{t+1}
ight].$$

• The time path for capital is

$$k_{t} = \frac{\beta\delta + \beta\delta^{2}}{1 + \beta\delta + \beta\delta^{2}} \left(\frac{\beta\delta \left[1 + r_{t+1}\right] w_{t-2}}{1 + \beta\delta} + w_{t-1} \right) \\ - \frac{w_{t}}{\left[1 + r_{t+1}\right] \left[1 + \beta\delta + \beta\delta^{2}\right]}$$

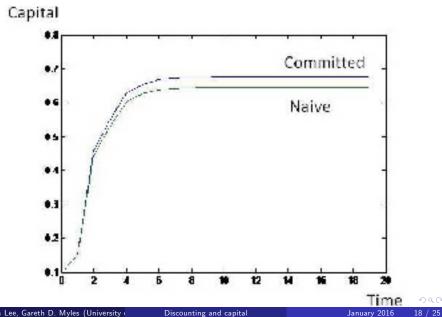
- Start the economy at time 0 with an initial stock of capital k_0
- At time 0 there are only young consumers
- The growth path for capital can then be constructed as

$$\begin{array}{rcl} k_1 & = & s_0^0 \\ k_2 & = & s_1^0 + s_1^1 \\ k_2 & = & s_2^1 + s_2^2 \\ & & \vdots \end{array}$$

.

• This dynamic system can be simulated forward

Capital accumulation and the steady state

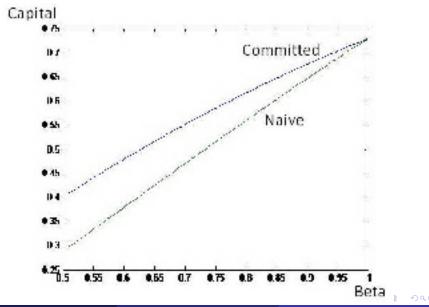


Jungyeoun Lee, Gareth D. Myles (University (

Discounting and capital

January 2016

Capital accumulation and the steady state



• Taxation of capital and labour income can be introduced by the change of variables

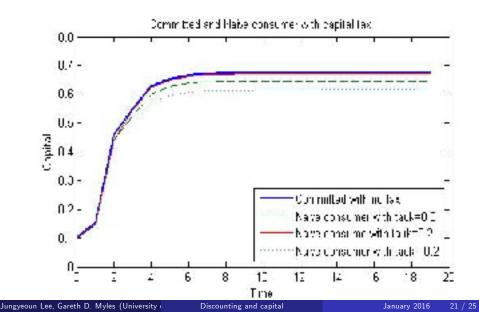
$$w_t \rightarrow [1 - \tau_I] w_t, \quad r_t \rightarrow [1 - \tau_k] r_t$$

• Impose a balanced budget for the government in each period

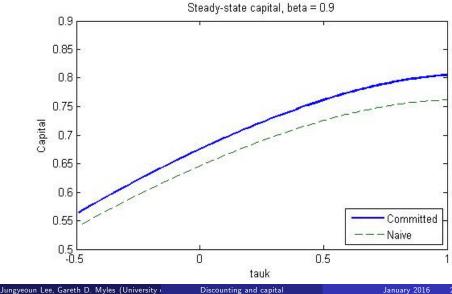
$$\tau_I w_t + \tau_k r_t k_t = 0$$

- Use this to eliminate τ_l and express growth in terms of τ_k alone
- The effects of tax policy can then be addressed
- How does the choice of τ_k affect the growth path for the naive consumer?

Taxation

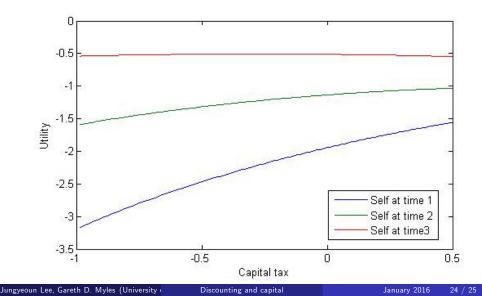


Taxation



- How can the tax policies be evaluated from a welfare perspective?
- The multiple selves of the Naive raise questions
- One approach is to use the evaluation of lifetime utility from time of birth
- An alternative is to seek unanimity on policy
 - Do the multiple selves agree on the policy?
- Welfare is now plotted for the multiple selves of the Naive

Taxation



- Quasi-hyperbolic preferences distort savings patterns
- But in the long run the initial effect is diminished
- With successive generations the preferences have an effect
- This can motivate a tax intervention which will be unanimously supported by all the multiple selves