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This version: January 23, 2016

Abstract

We develop a framework to formally account for needs when devising

rates for utility services.

We first show that interdependence between agents should be explicitly

accounted for: if rates depends only upon agents own consumption and

needs, budget balance and equal treatment of equal are not compatible.

We then characterize two polar opposite rate-setting families of solu-

tions. Conditional Equality solutions emphasizes responsibility for usage

beyond needs while Egalitarian Equivalent solutions stress compensation

for differences in needs.

Within these two families, we provide characterizations of several un-

derlying cost-sharing rules to govern the management of the produc-

tion externality when coupled by the relevant responsibility/compensation

transfers. We then present corresponding rate schedules that make use

of aggregate—and realistic—information to summarize distributional as-

pects.

∗Previous versions of this work were presented at the Montreal Environmental and Re-
source Economics Workshop 2013, at the 12th annual Journées Louis-André Gérard-Varet
(Aix-Marseille), at the University of Hawaii, at the University of Texas at Austin, at the
Toulouse School of Economics and at Université Quisqueya (Port-au-Prince). We thank
seminar participants for stimulating discussions and remarks. Specifically, we thank Marcus
Pivato and Stéphane Vigeant.
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1 Introduction

Some public utilities, like water and wastewater services, are essential to achiev-

ing a decent standard of living. In a society where households differ in terms of

their basic needs for utility services, these should be taken into account when

setting utility rates. In practice, commendable efforts have been made in this

regard, with rate schedules typically taking the form of multi-part tariffs (block

pricing), including discounts given to households with higher needs (for the case

of water supply in the US, see AWWA, 2012). These discounts can take the form

of a rebate to low-income households, which is subsidized by a higher overall

rate structure. Alternatively, increasing-block rate schedules subsidize the low-

est block through rate premiums for large users, hence affording all households

a low rate to meet basic needs. In the case of water services, this also addresses

the issue of resource conservation. Nevertheless, while these practices recognize

the fact that some households should be subsidized, the design of such subsidies,

both in shape and in magnitude, is largely left to rule-of-thumb considerations.1

Also, while it remains an empirical matter whether pricing water actually

leads to economic efficiency in practice, it is widely recognized that full cost

recovery is essential to the sustainability of the infrastructure (Massarutto, 2007;

AWWA, 2012; Canadian Water and Wastewater Association, 2015) and is “a key

preoccupation” of many OECD countries (OECD, 2010).2 Our concern is with

the fair division of those costs among users and, specifically, with accounting

for consumers’ needs.

We develop a framework to formally take matters of partial responsibility

into account when devising rates for utility services, which we will assume to be

water services, to fix ideas.3 Each agent is summarized by its water consumption

and its basic water needs, which may differ from one agent to the next. For

instance, one can think of agents as being households of possibly different sizes.

We take the view that agents are not responsible for their needs, but are fully

responsible for their consumption beyond those needs.

Our approach builds on the axiomatic framework of liberal egalitarianism,

1For example, the M1 Manual of the American Water Works Association, a highly regarded
reference by North American water utilities, gives surprisingly little guidance on how to de-
termine rate blocks: “Generally, rate blocks should be set at logical break points.” (AWWA,
2012, p.107)

2In the context of water services, Massarutto (2007) identifies three important benefits of
recovering costs through the pricing structure: to “ensure the viability of water management
systems”, to “maintain asset value over time”, and to “guarantee the remuneration of inputs”.

3Our analysis applies to all utilities necessary for a decent standard of living, including
electricity services.
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which aims at compensating differences in “non-responsibility” characteristics

while rewarding difference in characteristics under the agents’ control. Classi-

cally, agents are deemed responsible for their effort but have no control over their

talents. Here, agents have no control over their basic water needs—say, 50 liters

of clean water per day (Gleick, 1996)—but are responsible for their consumption

beyond that amount. Thus, water consumption is a ’hybrid’ characteristic of

sorts: the portion required to meet basic needs falls into the non-responsibility

category, whereas the remainder falls into that of responsibility.

A general theme of that literature is that the two desiderata of compensa-

tion and reward are incompatible (Bossert, 1995; Bossert and Fleurbaey, 1996;

Cappelen and Tungodden, 2006). Accordingly, one must set less ambitious goals

for redistributive policies. This is typically done by giving priority to one ideal,

compensation or reward, while weakening the scope of the other (Fleurbaey

2008, and references therein), leading to the Egalitarian Equivalent and Con-

ditional Equality solutions, respectively. Likewise, we characterize two polar

families of solutions: Conditional Equality solutions emphasize responsibility

for excessive usage (Theorem 1) while Egalitarian Equivalent solutions stress

compensation for differences in needs (Theorem 4).

Contrasting with previous results, the solutions we obtain are not unique be-

cause they depend on two additional dimensions that the literature is currently

not equipped to handle: how to account for ’hybrid’ characteristics and how to

account for cost externalities. Regarding the former, each family of solutions

will produce different solutions whether one measures responsibility in terms of

consumption beyond needs, q− q̄, or in terms of its fraction relative to one’s own

needs, (q − q̄) /q̄, for example. We call these views absolute responsibility and

relative responsibility, respectively. When agents’ welfare can be evaluated by

the means of a (common) utility function—i.e. when agents differ only in their

needs—, and the responsibility measure is chosen as to reflect the actual welfare

of the agents—a more sophisticated exercise—Conditional Equality solutions are

actually compatible with a much stronger compensation requirement than when

responsibility is computed arbitrarily (Theorem 3). This implies that, when dif-

ferences in needs summarize the relevant differences across agents, a sufficient

knowledge of the utility function can afford greater compatibility between the

desiderata of compensation and reward, a sharp contrast with existing results

in the literature on liberal egalitarianism.

Even with a specific view on responsibility, much freedom remains regarding

how to account for cost externalities within each family of solutions. Indeed,
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the partial responsibility approach determines how much of the costs should be

associated to meeting basic needs, and should therefore be financed so as to

compensate differences in needs. How to split the remainder, for which agents

are deemed responsible, falls into the realm of cost-sharing theory. In principle,

any cost-sharing rule can be associated with each family of solutions and with

each responsibility view. However, given the nature of the service at hand, we

posit an axiom, independence of higher (resp. lower) responsibility, which is

particularly desirable when costs are convex (resp. concave). This characterizes

a unique solution: the serial (resp. decreasing-serial) cost-sharing variant for

each family of solutions (Moulin and Shenker, 1992; resp. de Frutos, 1998),

Propositions 2-5.

Lastly, we show how one can implement the above schemes with realistic

informational assumptions; i.e., without making explicit interpersonal compar-

isons of needs and consumption, which would prove very difficult and possibly

counterproductive for all but small populations. In particular, we use house-

hold size as a proxy for needs and denote by q̄s the needs of a household of size

s. Using aggregate information to summarize distributional aspects, we design

rate schedules that, otherwise, explicitly depend on the sole individual charac-

teristics of households.

For instance, consider affine costs of the form C(Q) = F + cQ, with F, c > 0,

where Q is the aggregate demand of the population.4 When responsibility is

measured by absolute responsibility, q − q̄s, the decreasing serial conditional

equality solution5 yields the following rate schedule for households of size s:

F + cQ̄

N
+ c (q − q̄s) , (1)

where Q̄ is the quantity needed to cover the needs of the entire population,

and N is the total number of households. In addition to splitting the fixed

cost equally, this rate schedule splits the cost of the population’s needs equally

before pricing consumption at marginal cost minus a rebate equal to the cost of

meeting one’s own needs.

The rate schedule changes significantly under the relative responsibility view.

Assuming responsibility is identically distributed across types, we obtain the

4Such a cost structure is typical of water services, which exhibit high fixed costs (infras-
tructure) and low marginal costs (electricity for pumping and chemicals for treatment).

5As mentioned, the decreasing serial cost-sharing rule is the more appropriate for concave
costs.
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following rate schedule for households of size s:

F

N
+

c

q̄s/
(
Q̄/N

)q (2)

The result is still a two-part tariff but one where only the fixed cost is split

equally. No rebate is granted, and consumption is priced at a rate that is

inversely proportional to one’s needs.

As mentioned, the family of egalitarian equivalent solutions is based on util-

ity comparisons with households having a hypothetical reference level of needs,

q̄0, chosen by the planner. Under the decreasing serial egalitarian equivalent

solution, which emphasizes compensating differences in needs, the rate schedule

for households of size s is as follows:

F

N
+ cq + [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz,

where u (q, q̄s) is the utility of a household of size s and where ns (q) is the density

of households that are consuming q units in the distribution of size-s households.

The cost-sharing portion of the schedule, F
N + cq, splits the fixed cost equally

and prices consumption at marginal cost. Needs are completely absent from

that component. However, they enter in the remaining redistributive portion to

ensure that heterogeneity in needs does not drive differences in welfare.

The remainder is organized as follows. The next section offers a brief discus-

sion of the related literature. Section 3 presents the formal model. In Section

4, we take the cost-sharing rule as given in order to focus on our contribution;

namely, the introduction of essential needs in cost-sharing problems. We then

introduce a specific property of the rate function, which aims at protecting

small users while still holding them accountable, and show how doing so calls

for adopting a specific underlying cost-sharing rule: the well-known serial rule

(Section 5). Finally, we show in Section 6 how these abstract formulae actu-

ally boil down to specific two-part tariffs for which we provide an explicit and

complete determination using only coarse information on characteristics of the

population.
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2 Related Literature

Liberal egalitarianism. Our work expands the literature on liberal egalitar-

ianism in two ways. First, we extend the theory to settings with externalities.

To our knowledge, the only other effort in this direction is Billette de Villemeur

and Leroux (2011), which tackles the issue of global climate change and the

design of transfer schemes between countries to account for their responsibility

in current emissions and, possibly, their non-responsibility in past emissions.

Our second contribution has to do with our consideration of a characteristic—

water consumption—for which one is both partly responsible and partly non-

responsible. Ooghe and Peichl (2014) and Ooghe (2015) very recently introduced

the notion of ’partial control’ over some characteristics to handle different de-

grees of responsibility in any given characteristic. According to this ’soft cut’,

an agent may be responsible for, say, only 30% of his intellectual skills, the

remainder being attributable to inborn abilities or environmental factors. Our

view of consumption as a hybrid characteristic differs from theirs in that we

deem households fully non-responsible for their needs, but fully responsible for

any additional consumption. A portion of consumption is aimed at satisfying

a household’s needs—for which it is not responsible—whereas the remaining

consumption is viewed as discretionary.

Needs. Economists have been aware for quite some time that the welfare

interpretation of income inequality measures are problematic (see among oth-

ers Garvy, 1954; David, 1959; Morgan, 1962). How to account for differences

in ability and needs is still the topic of lively discussion in public economics,

in particular in the literature on taxation, but not only (e.g., Mayshar and

Yitshaki, 1996, Trannoy, 2003, Duclos et al. 2005, Duclos and Araar 2007).

Ebert (1997) adopts an axiomatic approach to discuss the comparison of in-

come distributions when the population consists of heterogeneous households.

Observing that economic growth had done very little for the poorer half of the

third world population, some economists at the World Bank have pointed out

the importance of looking at basic needs (Streeten and Burki, 1978; Streeten,

1979; Hicks and Streeten, 1979). Similarly, rather than being concerned with

the “affordability” of services to low-income households, as do most approaches

to rate setting, we focus on the material—as opposed to financial—needs of

households.

Fair division. Despite mounting empirical evidence suggesting that needs
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are a relevant ingredient of fairness (Konow, 2001; Traub et al, 2005; Schwettman,

2012), the literature on fair division has only recently considered basic needs

in a formal fashion. Specifically, although in a setting different from ours,

Bergantiños et al. (2012) and Manjunath (2012) modify the classical rationing

problem—where a fixed social endowment must be divided among several recipients—

to account for a minimal requirement. There, agents are indifferent between

receiving less than this minimal share and receiving nothing.

Because full cost recovery is an objective, the relevant strand of the fair

division literature is that of cost sharing. Yet, the literature on cost sharing

does not explicitly address the issue of basic needs. The closest interpretation

are sharing rules that protect small users when costs are convex (Moulin and

Shenker, 1992) or guarantee that small users will indeed be rewarded from

reducing their consumption to the tune of their effort (de Frutos, 1998). This

relates to the notion of affordability rather than to the fact that agents have

material needs, as we do here. Nonetheless, these two sharing rules complement

our approach (Section 5).

3 Accounting for Needs

The Model. Let {1, ..., n} be the set of agents. Agent i consumes a quantity

qi ≥ 0 of water. Serving all of the agents’ demands costs C (
∑
i qi) ≥ 0 that

must be paid for by the agents’ water bills, xi:

n∑
i=1

xi = C (Q) ,

where Q =
∑n
i=1 qi. The cost function, C, is assumed to be increasing.6 We

denote by Γ the class of cost functions.

Each agent i ∈ N must fulfill her basic needs in terms of water use, denoted

q̄i ≥ 0. We adopt a quasi-linear setup. Agent i’s utility level is defined by:

Ui (qi, q̄i, x) = ui (qi, q̄i)− xi,

where xi is agent i’s payment for water use. The utility function ui, which is

6We use the following convention: By ’increasing’ we mean ’strictly increasing’. We use the
term ’non-decreasing’ when the monotonicity is not strict. Similarly, by ’positive’ we mean
’strictly positive’, and use ’nonnegative’ when zero is not excluded. Etc.
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possibly agent specific, is defined on D ≡
{

(x, y) ∈ R2
+|x ≥ y

}
.7 It is assumed

to be increasing in qi and decreasing in q̄i. We denote by Υ the class of utility

functions. When agents consume exactly their needs, they share a common

utility level u that, without any loss of generality, we can set to zero. Formally,

ui (q̄i, q̄i) ≡ 0, ∀i ∈ N.

Assigning responsibility. Our aim is to design a pricing rule that will

take individual responsibilities into account. In order to do so, we must define

the sphere of responsibility of the agents. We take the view that agent are

not responsible for their essential needs, q̄i, but that are responsible for any

additional water consumption. The extent of responsibility can be measured

in many different ways. For the sake of generality, we define a real-valued

function, r(qi, q̄i), defined on D, which is increasing in water consumption qi,

non-increasing in needs q̄i, and normalized to zero when qi = q̄i. When no

confusion is possible, we abuse notations slightly by denoting ri = r(qi, q̄i). We

denote by R the class of responsibility functions.

A consumption-needs profile (or a profile) is a list of n consumption-needs

pairs that we shall denote (q, q̄) ∈ Dn, abusing notations slightly.8

Rate functions and cost-sharing rules. Our contribution is to account

for needs in cost sharing. We aim at washing out the impact of differences in

needs on consumers’ well-being, because we consider that agents are not respon-

sible for their needs. In turn, this calls for redefining the notion of responsibility

towards the total cost. Once this is done, we can then share the total cost ac-

cording to the responsibility profile, r ≡ (r1, r2, ..., rn). In doing so, cost-sharing

rules (ξ) will allow us to highlight the distinction between the handling of the

production externality—governed by the shape of the cost function—and the

redistribution problem that follows from taking essential needs into account.

We ultimately provide pricing formulae for water utilities, that we shall refer to

as rate functions (x).

Formally, let C(q, q̄) stand for the portion of the cost for which the pop-

ulation is considered to be responsible, once needs are accounted for. The

7Because we consider q̄i to represent agent i’s basic needs, it is a lower bound to her
consumption.

8We shall adopt the convention that boldface type refers to the vector of the relevant
variables. E.g., q = (q1, ..., qn) and so on.
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principles of liberal reward and compensation will guide us in defining C(q, q̄).

A cost-sharing rule is a mapping that splits this portion of the cost across users:

ξ : Rn × Γ → Rn, such that
∑
i ξi (r, C) = C(q, q̄). By contrast, a rate func-

tion takes all the information in the economy into account and is a mapping

x : Dn ×R×Υ× Γ→ Rn such that
∑
i∈N xi(q, q̄, r, u, C) = C(Q) where C(Q)

is the total cost to be covered.

Section 6 will be devoted to obtaining explicit formulae based on illustrative

examples. Until then, fix the cost function, C, the common utility function, u,

and the responsibility function, r. As a result, we abuse notations slightly and

write x(q, q̄) instead of the more cumbersome x(q, q̄, r, u, C).

4 Fair Treatment

4.1 Interdependence and Anonymity

Since one is not responsible of others actions or characteristics, a natural (al-

though naive) view of fairness in the context of rate setting consists in asking

for a user’s bill to be a function of her own individual characteristics only: qi

and q̄i. In this context, a minimal equality requirement is that two agents with

identical needs face the same pricing schedule:

Axiom. (Equal Rate Schedule for Equal Needs, ERSEN)

A user’s bill depends solely on individual characteristics: xi : (q, q̄) 7→ xi (qi, q̄i).

Moreover, the functions qi 7→ xi (qi, q̄i) and qj 7→ xj (qj , q̄j) must be identical

whenever q̄i = q̄j.

As it turns out, ERSEN is not only simplistic, it is downright unfeasible:

Theorem 1. No rate function satisfies ERSEN unless the cost function is

linear.9

Proof. In Appendix A.1.

By requiring that a user’s bill depend solely on individual characteristics,

ERSEN ignores the interdependence that exists between agents through the

cost function. Theorem 1 makes it clear that, if agents interdependence is not

accounted for, budget balance and equal treatment of equals are generically

incompatible.

9Proposition 1 follows from the nonlinearity of the cost function, and therefore holds true
even in the traditional cost-sharing set-up where needs are absent.
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It follows that we must depart from the simplistic view according to which agents

can ignore the impact they have on others, as it is assumed to be the case under

perfect competition, for instance. We therefore adopt a more comprehensive

view in which water bills depend explicitly on the entire profile of consumption

and needs.

The fairness requirement we shall adopt is that the rate function satisfies

anonymity. Formally, we shall require that, for any permutation of the agents

π : N → N :

xπ(i) (qπ; q̄π) = xi (q; q̄) for all i ∈ N ,

where qπ (resp. q̄π) is the vector of consumption (resp. needs) after permutation

of the agents along π.

Remark 1. Anonymity implies the equal treatment of equals: (qi, q̄i) = (qj , q̄j) =⇒
xi (q; q̄) = xj (q; q̄). Two users with identical needs and identical consumption

must pay the same bill.

4.2 The Reward Principle: Responsibility Axioms

The general idea behind the reward principle is that conservative users should

be rewarded in the form a lower water bill. Of course, if needs are accounted

for, whether consumption is moderate or not is not measured by considering

only actual consumption, but on the basis of r (qi, q̄i).

A minimal requirement in terms of responsibility is that the portion of costs

that exceeds the needs of the population, C(Q) − C(Q̄), be fully distributed

to users. This leads us to introduce a cost-sharing rule, ξ, that will split the

cost C(Q) − C(Q̄) according to the profile of responsibility characteristics, r.

Keeping with the desideratum of anonymity, we shall consider only symmetric

cost-sharing rules:

ξ
(
r, C − C(Q̄)

)
is a symmetric function of the variables ri, i ∈ N.

The function ξ embodies how we want to hold agents accountable for their

consumption.10 Given ξ, the following axioms specify how responsibility is

assigned, and are presented in decreasing order of stringency.

Axiom. (Shared Responsibility, SR)

10If needs were not an issue, we would be back to the classical cost-sharing framework where
ξ (q, C) alone defines the shares to be paid (see Moulin, 2002, for a thorough survey).
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For any profile (q, q̄) ∈ Dn :

xk (q, q̄)− xk (q̄, q̄) = ξk(r, C − C(Q̄)),

for all k ∈ N.

A less demanding axiom consists in sharing the costs C(Q)−C(Q̄) according

to ξ only when all agents have equal needs.

Axiom. (Shared Responsibility for Uniform Needs, SRUN)

For any profile (q, q̄) ∈ Dn such that q̄i = q̄j for all i, j ∈ N ,

xk(q, q̄)− xk(q̄, q̄) = ξk(r, C − C(Q̄)),

for all k ∈ N .

Finally, an even less demanding axiom consists in sharing costs according to

ξ only when needs are identical and equal to a reference level, q̄0 ∈ R+.

Axiom. (Shared Responsibility for Reference Needs, SRRN)

Define q̄0 ∈ R+ a reference level of needs. For any profile (q, q̄) ∈ Dn such that

q̄i = q̄0 for all i ∈ N ,

xk(q, q̄0)− xk(q̄0, q̄0) = ξk(r0, C − C(nq̄0)),

for all k ∈ N , where q̄0 = (q̄0, q̄0, ..., q̄0) and r0,i = r (qi, q̄0) for all i ∈ N .

4.3 The Compensation Principle: No Responsibility for

One’s Needs

Throughout the paper, we take the view that agents are not responsible for

their needs. This bears consequences on the way the cost of meeting the needs

of the population, C
(
Q̄
)
, is distributed across agents. But this may also play a

role in how the remaining cost, C (Q)−C
(
Q̄
)
, for which agents are considered

collectively responsible, is priced to the single agent.

Ideally, needs should have no impact on welfare:

Axiom. (Group Solidarity, GS)

For any i ∈ N and any profiles (q,q) and (q,q′) such that q′i 6= qi and q′j = qj

all j ∈ N\ {i} , then

[ui (qi, q̄
′
i)− x′i]− [ui (qi, q̄i)− xi] =

[
uj
(
qj , q̄

′
j

)
− x′j

]
− [uj (qj , q̄j)− xj ] ,
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all j ∈ N , where x = x (q,q) and x′ = x (q,q′).

Another approach in demanding that needs should not drive difference in

welfare consists in requiring that when agents bear an equal responsibility, their

welfare should be equal:

Axiom. (Equal Welfare for Equal Responsibility, EWER)

ri = rj =⇒ ui (qi, q̄i)− xi = uj (qj , q̄j)− xj ,

where x = x (q,q).

We shall also consider a weaker axiom, which consists in requiring equality

of welfare only if all agents bear an equal responsibility:

Axiom. (Uniform Welfare for Uniform Responsibility, UWUR)

If (q, q̄) ∈ Dn is such that,

ri = rj , for all i, j ∈ N

then

ui (qi, q̄i)− xi = uj (qj , q̄j)− xj , for all i, j ∈ N

where x = x (q,q).

An even weaker axiom consists in having the same requirement only if this

common level of responsibility is equal to a reference level:

Axiom. (Uniform Welfare for Reference Responsibility, UWRR)

Let r0 ∈ R+ be a reference responsibility level. If (q, q̄) ∈ Dn is such that,

r (qi, q̄i) = r0, for all i ∈ N

then

ui (qi, q̄i)− xi = uj (qj , q̄j)− xj , for all i, j ∈ N

where x = x (q,q).

Finally, the following axiom states that when this reference responsibility

level is set to zero, all should end up with the same level of welfare.

12



Axiom. (Uniform Welfare for Minimal Consumption, UWMC)

If (q, q̄) ∈ Dn is such that,

qi = q̄i, for all i ∈ N,

then

ui (qi, q̄i)− xi = uj (qj , q̄j)− xj , for all i, j ∈ N,

where x = x (q,q).

4.4 Pricing Mechanisms

We now turn to the design of pricing mechanisms. The principles of responsi-

bility and compensation will determine how to allocate the cost of meeting the

needs of the population, C
(
Q̄
)
, but not only. As we shall see, these principles

will also interact with how the cost C (Q) − C
(
Q̄
)
, is to be split. The two

portions of the cost cannot be considered in isolation.

Conditional Equality: SR+UWRR

Turning first to rate functions that prioritize holding agents responsible for their

consumption, we identify the strongest compensation axioms compatible with

SR. We find that UWRR and SR jointly characterize a family of rate functions

that is parametrized by the choice of a reference responsibility level, r0:

Theorem 2. A rate function satisfies SR and UWRR if and only if it is a

Conditional Equality solution: For some reference level r0 > 0, and all i ∈ N ,

xCEi (q, q̄) =
C
(
Q̄
)

n
+ ξi

(
r, C − C(Q̄)

)
+ ui

(
q0
i , q̄i

)
− 1

n

∑
j∈N

uj
(
q0
j , q̄j

)
where q0

i is defined by r
(
q0
i , q̄i

)
= r0.

Proof. In Appendix A.2.

A special variant of the Conditional Equality solution consists in choosing

zero responsibility as a reference: q0 = q̄. This implies charging households the

same fee to meet their own needs, whatever these needs may be. Should they

choose to consume more, they would bear the consequences according to the

cost sharing rule in effect.
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Corollary 1. The unique rate function satisfying SR and UWMC is the fol-

lowing:

xCE0
i (q, q̄) =

C
(
Q̄
)

n
+ ξi(r, C − C(Q̄)) for all i ∈ N .

A limit of xCE0 is that compensation for needs is established on the basis

of a single scenario which is actually never observed. However, it possesses the

advantage of not requiring knowledge of the utility function.

Theorem 2 is generically tight because xCE generically does not satisfy the

stronger compensation axiom UWUR. The only exception is when the agents

share a common utility function and the responsibility function, r, reflects the

utility derived by the agents:

Proposition 1. xCE does not satisfy UWUR unless

(1) all agents share a common utility function, i.e. ui = u, all i ∈ N for some

function u : D→ R increasing in its first argument and decreasing in the second

(2) the responsibility function co-varies with agents utility, i.e. r = ρ ◦ u, for

some increasing function ρ : R→ R+.

Proof. In Appendix A.3.

However, when the agents share a common utility function and the respon-

sibility function is set so as to reflect that utility, SR is even compatible with

the stronger compensation axiom EWER. Together, they characterize a unique

solution:

Theorem 3. When the agents differs only in their needs so that they share a

common utility function u and the responsibility function is defined as r = ρ◦u,

for some increasing function ρ : R→ R+, a rate function satisfies EWER and

SR if and only if

xCE =
C
(
Q̄
)

n
+ ξi(r, C − C(Q̄)) for all i ∈ N.

Proof. In Appendix A.4.

The above result apply only to specific circumstances: all agents are sup-

posed to share a common utility function so that all their differences are sup-

posed to derive from their sole difference in needs. Yet, a remarkable feature

of the above characterization is that it does not require specifying a reference
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responsibility level, although it obviously requires knowledge of the (common)

utility function.

Theorem 3 is a tight characterization because SR is incompatible with the

strongest solidarity axiom, GS, as Theorem 4 below implies.

Egalitarian Equivalence: GS+SRRN

We now turn to rate functions that prioritize negating the impact of differences

in needs on welfare. Axiom GS embodies this desideratum. We show that GS

together with SRRN determine a family of rate functions that is parametrized

by a reference level of needs, q̄0:

Theorem 4. A rate function satisfies GS and SRRN if and only if it is an

Egalitarian Equivalent solution: For a given reference level of needs, q̄0 > 0,

xEEi (q, q̄) =
C(nq̄0)

n
+ ξi (r0, C − C (nq̄0))

+ [ui (qi, q̄i)− ui (qi, q̄0)]− 1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)] ,

where r0 = (r (q1, q̄0) , r (q2, q̄0) , ..., r (qn, q̄0)).

Proof. In Appendix A.5.

xEE measures responsibility relative to the common reference level, q̄0: ri,0 =

r (qi, q̄0) and splits costs accordingly. Differences between actual needs and

the reference level are compensated for so as to preserve the relative welfare

distribution.

The characterization is tight, in the sense that the Egalitarian Equivalent

does not satisfy stronger responsibility axioms. This can be shown by consid-

ering a profile (q, q̄1) such that q̄1 6= q̄0 to obtain that SRUN is not satisfied.

The formal proof of which can be found in Appendix A.6.

Remark 2. The cost-sharing portion of the transfer, (1/n)C(nq̄0)+ξi (r0, C − C (nq̄0)),

is driven by the consumption profile of the agents and by the cost structure, but

is actually independent of individual needs. By contrast, the redistributive com-

ponent of the water bill, [ui (qi, q̄i)− ui (qi, q̄0)]−(1/n)
∑n
k=1 [uk (qk, q̄k)− uk (qk, q̄0)],

is based on the benefits the agents derive from water consumption and is inde-

pendent of costs.

Remark 3. Whenever needs summarize all relevant differences across agents

so that they share a common utility function u, whatever the value of q̄0,

15



the Egalitarian Equivalent solution fully addresses the issue of differences in

needs whenever consumption is uniform. Formally, if q1 = q2 = ... = qn, then

ui (qi, q̄i)−xEEi (q, q̄) = uj (qj , q̄j)−xEEj (q, q̄) for all i, j. In other words, under

EE, any differences in utility levels are attributable to differences in consump-

tion.

Remark 4. To appreciate the difference between the Egalitarian Equivalent so-

lution, xEE , and the Conditional Equality solution, xCE , consider the case

where the reference level of needs is the average level of needs of the population:

q̄0 = Q̄/n. It follows that:

xEEi (q, q̄) = xCEi (q, q̄0)+[ui (qi, q̄i)− ui (qi, q̄0)]− 1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)]

for all i ∈ N . In this particular case, the Egalitarian Equivalent solution applies

additional redistribution associated with the impact of needs on welfare levels.

Remark 5. However, it does not follow that the Egalitarian Equivalent solution

is always more redistributive. Indeed, the parameter q̄0 dictates both the portion

of the cost to be shared in an egalitarian fashion and how differences in needs

are accounted for. In particular, when q̄0 = 0 rather than Q̄/n, the portion

of costs to be split equally under xEE is nil—C (nq̄0) /n = 0—and users are

held responsible for their whole consumption. By contrast, xCE always shares

equally the portion of costs corresponding to the needs of the population: C
(
Q̄
)
.

5 Protecting small users while holding them re-

sponsible

5.1 Convex Costs

We introduce an axiom that aims to protect parsimonious users from the cost

externality caused by wasteful users: An agent who increases her responsibil-

ity level cannot result in consumers with lower responsibility paying a higher

amount.

Axiom (Independence of Higher Responsibility, IHR). For all (q, q̄) and (q′, q̄′)

such that q̄′ = q̄ and r′ ≥ r. For all i ∈ N, define L (i) = {j ∈ N s.t. rj ≤ ri}
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the set of users with lower responsibility than i. Then,

{
r′j = rj for all j ∈ L (i)

}
=⇒

{
ξj
(
r′, C − C

(
Q̄′
))

= ξj
(
r, C − C

(
Q̄
))

for all j ∈ L (i)
}
.

Remark 6. Note that for a given profile (q, q̄), such that qi > qj and q̄i > q̄j for

some i and j, then one can find two functional forms r̃ and r̂ such that

r̃ (qi, q̄i) ≥ r̃ (qj , q̄j) and r̂ (qi, q̄i) < r̂ (qj , q̄j) .

Hence, the identity of consumers with a smaller responsibility depends on how

responsibility is measured; i.e., upon the specific functional form for r.

Serial Conditional Equality

Recall that r (·, q̄i) maps an agent’s consumption to her responsibility level,

given her needs. Define the inverse of this function, gi (·) = (r)
−1

(·, q̄i), which

maps a responsibility level to the corresponding consumption level given the

needs of the agent.

Proposition 2. The unique rate function satisfying UWMC, SR and IHR

is the following:

xSCE0
i (q, q̄) =

C
(
Q̂i
)

(n− i+ 1)
−

i−1∑
k=1

C
(
Q̂k
)

(n− k) (n− k + 1)
for all i ∈ N ,

where, for all k ∈ N ,

Q̂k =

k−1∑
i=1

qi +

n∑
i=k

gi (rk) ,

where the set of agents is ordered so as to have r1 ≤ r2 ≤ ... ≤ rn.

Proof. In Appendix B.1.

Remark 7. xSCE0 amounts to applying the serial cost-sharing rule to responsi-

bility levels to split the associated costs. In fact,

xSCE0
i (q, q̄) =

1

n
C
(
Q̄
)

+

i∑
k=1

1

n− k + 1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
,
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with Q̂0 = Q̄ . This is of notable interest because the serial cost-sharing rule is

known for its strong incentives properties (Moulin and Shenker, 1992).

Notice that a higher responsibility level leads to a higher bill: ri ≥ rj implies

xSCE0
i (q, q̄) ≥ xSCE0

j (q, q̄) because

Q̂k+1 − Q̂k =

n∑
i=k+1

[gi (rk+1)− gi (rk)] ≥ 0.

Serial Egalitarian Equivalence

Proposition 3. The unique rate function satisfying GS, SRRN and IHR is

the following:

xSEEi (q, q̄) =
C
(
Q̃i
)

(n− i+ 1)
−

i−1∑
k=1

C
(
Q̃k
)

(n− k) (n− k + 1)

+ [ui (qi, q̄i)− ui (qi, q̄0)]− 1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)]

for all i ∈ N , where Q̃k =
∑k
l=1 ql + (n− k) qk with the set of agents ordered so

as to have q1 ≤ q2 ≤ ... ≤ qn.

Proof. In Appendix B.2.

Remark 8. The expression for xSEE is independent of the form of responsibility.

Remark 9. xSEE amounts to applying the serial cost-sharing rule directly to

consumption, along with transfers to compensate for differences in needs. In

fact,

xSEEi (q, q̄) =
1

n
C

(
n inf

j
qj

)
+

i−1∑
k=1

1

n− k

[
C
(
Q̃k+1

)
− C

(
Q̃k
)]

+ [ui (qi, q̄i)− ui (qi, q̄0)]− 1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)] .

Note that the compensation terms may affect the well-known incentives prop-

erties of the serial cost-sharing rule.
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At first blush, the expressions of xSCE0 and xSEE may seem similar, with

xSEE having an additional compensation term. However, note that agents are

ordered according to their consumption under xSEE but are ordered according

to their responsibility level under xSCE0. Also, the Qk’s that enter in the cost-

sharing portion stand for different aggregate consumption levels. In particular,

SEE applies the serial cost-sharing rule directly on consumption levels, with the

consideration for needs solely entering the compensation portion. By contrast,

SCE applies the serial cost-sharing rule to responsibility levels which, by design,

take individual needs into account.

5.2 Concave Costs

With increasing marginal cost, we wished to protect users with smaller respon-

sibility levels from bearing a high marginal cost due to the presence of ’large

users’. By contrast, when the technology exhibits increasing returns to scale,

we want ’small users’ to fully benefit from a further reduction in their consump-

tion. It follows that larger users never benefit from the effort of smaller users

in reducing their consumption.

Axiom (Independence of Lower Responsibility, ILR). For all (q, q̄) and (q′, q̄′)

such that q̄′ = q̄ and r′ ≤ r. For all i ∈ N, define H (i) = {j ∈ N s.t. rj ≥ ri}
the set of users with higher responsibility level than i. Then,

{
r′j = rj for all j ∈ H (i)

}
=⇒

{
ξj
(
r′, C − C

(
Q̄′
))

= ξj
(
r, C − C

(
Q̄
))

for all j ∈ H (i)
}
.

Decreasing Serial Conditional Equality

Proposition 4. The unique rate function satisfying UWMC, SR and ILR is

the following:

xDSCE0
i (q, q̄) =

C
(
Q̌i
)

i
−

n∑
k=i+1

C
(
Q̌k
)

k (k − 1)
for all i ∈ N ,

where, for all k ∈ N ,

Q̌k =

k∑
l=1

gl (rk) +

n∑
l=k+1

ql,

where the set of agents is ordered so as to have r1 ≤ r2 ≤ ... ≤ rn.
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Proof. In Appendix B.3.

Remark 10. xDSCE0 amounts to applying the decreasing serial cost-sharing rule

to responsibility levels in order to split the associated costs. In fact,

xDSCE0
i (q, q̄) =

1

n
C
(
Q̌n
)
−
n−1∑
k=i

1

k

[
C
(
Q̌k+1

)
− C

(
Q̌k
)]

with Q̌1 = Q. Like the serial rule, the decreasing serial cost-sharing rule is also

known for its strong incentives properties (de Frutos, 1998).

Note that a higher responsibility level indeed leads to a higher bill: qri ≥ qrj
implies xDSCE0

i (q, q̄) ≥ xDSCE0
j (q, q̄) because

Q̌k+1 − Q̌k =

k∑
l=1

[gl (rk+1)− gl (rk)] ≥ 0.

Decreasing Serial Egalitarian Equivalence

Proposition 5. The unique rate function satisfying SRRN, GS and ILR is

the following: For all i ∈ N ,

xDSEEi (q, q̄) =
C
(
Q̆i
)

i
−

n−1∑
k=i+1

C
(
Q̆k
)

k (k − 1)

+ [ui (qi, q̄i)− ui (qi, q̄0)]− 1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)]

where Q̆k = kqk +
∑n
l=k+1 ql for all k = 1, ..., n, with the set of agents ordered

so as to have q1 ≤ q2 ≤ ... ≤ qn.

Proof. In Appendix B.4.

Remark 11. xDSEE amounts to applying the decreasing serial cost-sharing rule

directly to consumption, along with transfers to compensate for differences in

needs. In fact,

xDSEEi (q, q̄) =
1

n
C

(
n sup

j
qj

)
−
n−1∑
k=i

1

k

[
C
(
Q̆k+1

)
− C

(
Q̆k
)]

+ [ui (qi, q̄i)− ui (qi, q̄0)]− 1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)]
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6 Accounting for responsibility in practice

In practice, making explicit interpersonal comparisons of needs and consump-

tion would be very difficult and possibly counterproductive. Nevertheless, we

show how one can implement the above schemes with realistic informational

assumptions.11

6.1 Pricing using aggregate distributions

We now represent the population by a distribution. Assume that needs sum-

marize all relevant differences so that agents share a common utility function u.

Assume further that there is a finite number of types in the needs dimension due

to, say, household size, and let q̄s denote the needs of a household of size s ∈ S.

Let ns (q) be the density of type-s households with consumption level q and

let Ns (q) be the associated cumulative distribution: Ns (q) =
´ q
z=0

ns (z) dz.

Define n (q) =
∑
s∈S ns (q) and N (q) =

∑
s∈S Ns (q). We slightly abuse no-

tation and write r (q, s) instead of r (q, q̄s) whenever it is unambiguous. Given

the responsibility function r, define nrs (ρ) the density of type-s households with

responsibility level ρ. Let Nr
s (ρ) be the associated cumulative distribution:

Nr
s (ρ) =

´ ρ
z=0

nrs (z) dz and define Nr (ρ) =
∑
s∈S N

r
s (ρ). We now define the

following continuous counterparts to the quantities Q̂, Q̃, Q̌ and Q̆, respectively

corresponding to the SCE0, SEE, DSCE0 and DSEE schemes:

SCE0 : Q̂ (r) =
∑
s∈S

[ˆ +∞

0

gs (inf{r, z})nrs (z) dz

]
SEE : Q̃ (q) =

ˆ ∞
0

inf{q, z}n (z) dz

DSCE0 : Q̌ (r) =

ˆ ∞
z=0

∑
s∈S

gs (sup {r, z})nrs (z) dz

DSEE : Q̆ (q) =

ˆ ∞
z=0

sup{q, z}n (z) dz

with gs (·) ≡ r−1 (·, q̄s) and where N and Ns denote the total number of house-

holds and the total number of type-s households, respectively.

With this notation, the expressions for xSCE0, xSEE , xDSCE0, and xDSEE

11Computations can be found in Appendix C

21



take the following forms:

xSCE0 (ρ) =
C
(
Q̄
)

N
+

ˆ ρ

z=0

1

N −Nr (z)
C ′
(
Q̂ (z)

) dQ̂ (z)

dρ
dz

xSEE (q, s) =
C(N inf q)

N
+

ˆ q

z=0

C ′
(
Q̃ (z)

)
dz

+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz

xDSCE0 (ρ) =
1

N
C
(
Q̌sup

)
−
ˆ sup ~ρ

z=ρ

1

Nr (z)
C ′
(
Q̌ (z)

) dQ̌ (z)

dz
dz

xDSEE (q, s) = 1
N C (N sup q)−

ˆ supq

z=q

C ′
(
Q̆ (z)

)
dz

+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz

where Q̌sup = Q̌ (sup ~ρ) with sup ~ρ the largest responsibility level in the popu-

lation.

6.2 Illustrative Examples

To illustrate, we now consider two specific forms for r. In the absolute re-

sponsibility view, r (q, s) = q − q̄s, whereas in the relative responsibility view,

r (q, s) = (q − q̄s) /q̄s. If s indeed denotes household size, the former holds

households equally responsible for consumption above needs regardless of their

size. By contrast, the latter view holds larger households less responsible than

smaller households for an identical consumption level above needs. In other

words, needs also impact the way consumption beyond them is considered.

Decreasing Returns to Scale : Quadratic Costs

Assume that costs are given by the following quadratic function: C (Q) = cQ2/2.

Under absolute responsibility, the serial conditional equality rule with zero re-

sponsibility as a reference yields:

xSCE0 (q, s) =
1

N

cQ2

2
+ cQ

(
q − q̄s −

Q− Q̄
N

)
.

In words, users share the total cost equally and are rewarded or penalized for

deviation from the average responsibility level . These deviations are valued at
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marginal cost.

Under relative responsibility, however, marginal consumption is not priced

equally across household types. When responsibility is equally distributed across

types, we obtain the following expression:

xSCE0 (q, s) =
1

N

cQ2

2
+ cQ

Q̄

N

(
q − q̄s
q̄s

− Q− Q̄
Q̄

)
.

Again, xSCE0 charges everyone the average cost and prices deviations from the

average responsibility, but this time at the marginal cost of responsibility if

needs were equal to Q̄/N . Observe that if q̄s > Q̄/N consumption is priced

at less than the marginal cost while the consumption of households with lower-

than-average needs (q̄s < Q̄/N) is priced above marginal cost.12

The serial egalitarian equivalent solution takes on the following form:

xSEE (q, s) = cQ

(
q − Q

2N

)
(3)

+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz.

(4)

Recall that the expression for SEE is independent of the responsibility view

(e.g., absolute or relative responsibility). However, payments now depend upon

the utility function. This calls for an observation. Suppose that a household’s

type is simply its size and that q̄s = q̃× s for some reference per-person level of

needs, q̃. Given a consumption level, q, it seems natural for the total bill to be

lower for larger households. For this to be the case, it must be that u (q, q̃ × s) is

decreasing in s, according to Expression (4). This implies that household utility

cannot be written as a simple sum of the utility of its members, s × vq̃ (q/s),

where vq̃ is some increasing and concave function. Indeed, we would have:

d

ds
[s× vq̃ (q/s)] = vq̃

(q
s

)
− q

s
v

′

q̃

(q
s

)
≥ 0,

by the concavity of vq̃. Thus, one must refrain from modeling households as a

sum of individual utility functions.13

12This is unlike the case of absolute responsibility above, where the marginal cost of re-
sponsibility was identical across households and equal to the marginal cost.

13This is reminiscent of the Repugnant Conclusion in population ethics (Blackorby et al.,
2005). The latter is a consequence of the pure utilitarian criterion, which deems any population
always worse off than a larger one sharing the same resources, even if the population size is
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Increasing Returns to Scale: Affine Costs

Assume costs are of the form C(Q) = F + cQ, with F, c ∈ R+. When respon-

sibility is measured by absolute responsibility, the decreasing serial conditional

equality rule yields:

xDSCE0 (q, q̄s) =
F + cQ̄

N
+ c (q − q̄s) .

In addition to splitting the fixed cost equally, DSCE0 also splits the cost of the

population’s needs equally before charging users at marginal cost with a rebate

equal to the cost of meeting their needs.

Under the relative responsibility view, and if responsibility is identically

distributed across types, we obtain:

xDSCE0 (q, q̄s) =
F

N
+ c

1

q̄s/
(
Q̄/N

)q.
As with absolute responsibility, DSCE0 splits the fixed cost equally. No re-

bate is granted, however, but consumption is priced at a rate that is inversely

proportional to one’s needs.

We now turn to DSEE.

xDSEE (q, q̄s) =
F

N
+ cq

+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz

The cost-sharing portion of DSEE splits the fixed cost equally and prices

consumption at marginal cost. Needs are completely absent from that compo-

nent. However, the redistributive portion of DSEE ensures that heterogeneity

in needs does not drive differences in welfare.

such that individuals have barely enough to survive (see also Fleurbaey et al., 2014).
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A Appendix: Section 4 Proofs

A.1 Proof of Proposition 1

Consider two demand levels, q, q′ ∈ R+. Assume q̄ ∈Rn+ is such that q̄1 = q̄2.

Consider q,q′ ∈ Rn+ such that q1 = q2 = q, q′1 = q′2 = q′ and q−12 = q′−12.

Lastly, define two intermediate profiles, q1 and q2 such that
(
q1
1 , q

1
2

)
= (q′, q),(

q2
1 , q

2
2

)
= (q, q′), and q1

−12 = q2
−12 = q−12. By ERSEN, x1 (q, q̄) = x2 (q, q̄)

and x1 (q′, q̄) = x2 (q′, q̄). Moreover, q1
1 = q2

2 , thus by anonymity, x1

(
q1, q̄

)
=

x2

(
q2, q̄

)
and, with an unchanged consumption, x1

(
q2, q̄

)
= x2

(
q1, q̄

)
=

x1 (q, q̄) = x2 (q, q̄). Hence, by budget balance,

x1

(
q1, q̄

)
− x1 (q, q̄) = C (Q+ q′ − q)− C (Q) , and

x2

(
q2, q̄

)
− x2 (q, q̄) = C (Q+ q′ − q)− C (Q) .

Moreover,

x1 (q′, q̄)− x1 (q, q̄) = x2 (q′, q̄)− x2 (q, q̄) =
1

2
[C (Q+ 2 (q′ − q))− C (Q)] .

Because q′1 = q1
1 , and q′2 = q2

2 , we have x1 (q′, q̄) = x1

(
q1, q̄

)
and x2 (q′, q̄) =

x2

(
q2, q̄

)
. As a result, C (Q+ q′ − q)− C (Q) = 1

2 [C (Q+ 2 (q′ − q))− C (Q)]

that is

C (Q+ 2 (q′ − q)) + C (Q) = 2C (Q+ q′ − q) .

This rewrites as f (2x)+f (0) = 2f (x) where f ≡ C (Q+ ·) and x = q′−q. This

equality must hold for all x and thus defines a functional equation in f . This is

a well-known Cauchy equation (Aczél, 1967), which requires f—and therefore

C—to be linear in its argument.

A.2 Proof of Theorem 2

Let r0 ∈ R+ be the reference responsibility level and
(
q0, q̄

)
∈ P be such that,

r
(
q0
i , q̄i

)
= r0, for all i ∈ N.

By UWRR,

ui
(
q0
i , q̄i

)
− xi

(
q0,q

)
= uj

(
q0
j , q̄j

)
− xj

(
q0,q

)
, for all i, j ∈ N.
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Hence,

xi
(
q0,q

)
= ui

(
q0
i , q̄i

)
− 1

n

∑
j∈N

[
uj
(
q0
j , q̄j

)
− xj

]
,

=
C
(
Q0
)

n
+ ui

(
q0
i , q̄i

)
− 1

n

∑
j∈N

uj
(
q0
j , q̄j

)
,

where Q0 ≡
∑
j∈N q

0
j .

Applying SR between profiles
(
q0, q̄

)
and (q̄, q̄) yields:

xi(q
0, q̄)− xi(q̄, q̄) = ξi

(
r0, C − C(Q̄)

)
.

Hence, by symmetry of ξ,

xi(q̄, q̄) = xi
(
q0, q̄

)
−
C
(
Q0
)
− C

(
Q̄
)

n
.

Applying SR between profiles (q̄, q̄) and (q, q̄) yields:

xi(q, q̄)− xi(q̄, q̄) = ξi
(
r, C − C(Q̄)

)
.

Thus,

xi(q, q̄) = ξi
(
r, C − C(Q̄)

)
+ xi (q̄, q̄)

= ξi
(
r, C − C(Q̄)

)
+ xi

(
q0, q̄

)
−
C
(
Q0
)
− C

(
Q̄
)

n

= ξi
(
r, C − C(Q̄)

)
+
C
(
Q̄
)

n
+ ui

(
q0
i , q̄i

)
− 1

n

∑
j∈N

uj
(
q0
j , q̄j

)
.

A.3 Proof of Proposition 1

Let
(
q0, q̄

)
∈ P and

(
q1, q̄

)
∈ P be two profiles associated respectively with

the uniform responsibility levels r0 and r1 6= r0. Suppose that x (q,q) satisfies

UWUR so that it satisfies in particular UWRR for the reference responsibility

level r0. If it does also satisfy SR, it must be written as

xi (q, q̄) =
C
(
Q̄
)

n
+ξi

(
r, C − C(Q̄)

)
+ui

(
q0
i , q̄i

)
− 1

n

∑
j∈N

uj
(
q0
j , q̄j

)
, for all i ∈ N.
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This says in particular that when q = q1, we have:

xi
(
q1, q̄

)
=
C
(
Q̄
)

n
+ξi

(
r1, C − C(Q̄)

)
+ui

(
q0
i , q̄i

)
− 1

n

∑
j∈N

uj
(
q0
j , q̄j

)
, for all i ∈ N.

By symmetry of ξ, we have ξi
(
r1, C − C

(
Q̄
))

=
[
C
(
Q1
)
− C

(
Q̄
)]
/n, for all

i ∈ N so that

xi
(
q1, q̄

)
=
C
(
Q1
)

n
+ ui

(
q0
i , q̄i

)
− 1

n

∑
j∈N

uj
(
q0
j , q̄j

)
, for all i ∈ N.

If x (q,q) satisfies UWRR for the reference responsibility level r1 (to which q1

is associated), it must be the case that

ui
(
q1
i , q̄i

)
− xi

(
q1, q̄

)
= uj

(
q1
j , q̄j

)
− xj

(
q1, q̄

)
, for all i, j ∈ N.

From the expression of the xi
(
q1, q̄

)
established above, we must have

ui
(
q1
i , q̄i

)
− ui

(
q0
i , q̄i

)
= uj

(
q1
j , q̄j

)
− uj

(
q0
j , q̄j

)
, for all i, j ∈ N.

This implies in turn that

ui
(
q1
i , q̄i

)
− ui

(
q0
i , q̄i

)
=

1

n

∑
j∈N

[
uj
(
q1
j , q̄j

)
− uj

(
q0
j , q̄j

)]
, for all i ∈ N.

This must be true for any responsibility level r0 and r1 and the associated

profiles
(
q0, q̄

)
∈ P and

(
q1, q̄

)
∈ P . Thus, by setting r1 = 0 and considering

the associated profile (q̄, q̄) ∈ P, we obtain that, for SR and UWUR to be

compatible, the utility function must be such that

ui
(
q0
i , q̄i

)
=

1

n

∑
j∈N

uj
(
q0
j , q̄j

)
(5)

for all i ∈ N and for all profiles
(
q0, q̄

)
∈ P such that

r
(
q0
i , q̄i

)
= r0, for all i ∈ N.

Fix r0 and q̄ and define, for all i ∈ N , q
(
r0, q̄i

)
=
{
q ∈ R+|r (q, q̄i) = r0

}
.

By continuity and strict monotonicity of r, q
(
r0, q̄i

)
is a singleton and

(
r0, q̄i

)
7→

q
(
r0, q̄i

)
defines a continuous function that is increasing in its first argument.
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Also, define u0 = u1

(
q
(
r0, q̄1

)
, q̄1

)
. It follows from Expression (5) that we

must have ui
(
q0
i , q̄i

)
= u0 for any i and any

(
q0
i , q̄i

)
such that r

(
q0
i , q̄i

)
= r0 or,

equivalently, that ui
(
q
(
r0, q̄i

)
, q̄i
)

= u0 for all i and all q̄i. Because u0 depends

neither upon i, nor uponq̄i, it must be that
(
q̄i, r

0
)
7→ ui

(
q
(
r0, q̄i

)
, q̄i
)

is a

function of r0 only. Therefore, for all r0, all i and all q̄i,

ui
(
q
(
r0, q̄i

)
, q̄i
)

= v
(
r0
)

for some function v on R. Because ui and q are both continuous and increasing

in their first argument, v is also a continuous increasing function.

Finally, let (qi, q̄i) ∈ D, evaluating the above expression at r0 = r (qi, q̄i),

and noticing that

q (r (qi, q̄i) , q̄i) = qi

yields:

ui (qi, q̄i) = v (r (qi, q̄i)) .

This in turn implies that the utility must be a transformation of the responsi-

bility function:

ui = u ≡ v ◦ r.

Because v is a continuous and increasing function of R, we can write:

r = ρ ◦ u,

with ρ = v−1, so that r is a transformation of the common utility functionu.

A.4 Proof of Theorem 3

Only if. Let x satisfy EWER and SR. Because EWER is more demanding

than UWUR, x must also satisfy UWUR . By Proposition 1, this can only

occur if ui = u for some utility function u and r = ρ◦u for some continuous and

increasing function ρ. Because UWUR is more demanding than UWRR, x

must also satisfy UWRR. By Theorem 2, x must be a Conditional Equivalent

solution:

xCEi (q, q̄) =
C
(
Q̄
)

n
+ ξi

(
r, C − C(Q̄)

)
+ u

(
q0
i , q̄i

)
− 1

n

∑
j∈N

u
(
q0
j , q̄j

)
,
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where u is the common utility function and q0 is such that, for all i ∈ N ,

r
(
q0
i , q̄i

)
= r0 for some reference responsibility level, r0. Moreover, it follows

from r = ρ ◦ u that u
(
q0
i , q̄i

)
= ρ−1

(
r0
)

for all i ∈ N . Hence,

xCEi (q, q̄) =
C
(
Q̄
)

n
+ ξi

(
r, C − C(Q̄)

)
, for all i ∈ N.

If. Let x be defined as in the statement of the Theorem. Let (q, q̄) ∈ Dn

such that r (qi, q̄i) = r (qj , q̄j)for some i, j ∈ N . It follows from the symmetry

of ξ that

ξi
(
r, C − C(Q̄)

)
= ξj

(
r, C − C(Q̄)

)
.

As a result,

xCEi (q, q̄) = xCEj (q, q̄).

Moreover, because r = ρ ◦ u for some continuous and increasing function ρ, we

can write u = ρ−1 ◦ r. Thus,

r (qi, q̄i) = r (qj , q̄j) =⇒ u (qi, q̄i) = u (qj , q̄j) ,

and ui = uj = u yields

ui (qi, q̄i)− xCEi (q, q̄) = uj (qj , q̄j)− xCEj (q, q̄).

A.5 Proof of Theorem 4

Let q̄0 ∈ R+ be a reference level of needs and denote by q̄0 = (q̄0, q̄0, ..., q̄0) ∈ Rn+
the associated reference vector. Consider the profile (q; q̄0). By budget balance

and equal treatment of equals

xi (q̄0, q̄0) =
C(nq̄0)

n
.

By SRRN,

xi (q, q̄0)− xi (q̄0, q̄0) = ξi (r0, C − C (nq̄0)) for all i ∈ N,

where r0,i = r (qi, q̄0) for all i.

Define q̄1
0 = (q̄1, q̄0, ..., q̄0). Applying GS between (q, q̄0) and

(
q, q̄1

0

)
yields,
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for all j 6= 1:

u1 (q1, q̄1)− x1
1 − u1 (q1, q̄0) + x0

1

= uj (qj , q̄0)− x1
j − uj (qj , q̄0) + x0

j

where x0
j = xj (q, q̄0) and x1

j = xj
(
q, q̄1

0

)
for all j ∈ N . This yields

x0
j − x1

j = u1 (q1, q̄1)− u1 (q1, q̄0) + x0
1 − x1

1,

hence, by budget balance

x1
1 − x0

1 =
n− 1

n
[u1 (q1, q̄1)− u1 (q1, q̄0)]

x1
j − x0

j = − 1

n
[u1 (q1, q̄1)− u1 (q1, q̄0)]

all j 6= 1. Applying GS to profiles
(
q, q̄k0

)
where q̄k0 = (q̄1, q̄2, ..., q̄k, q̄0, ..., q̄0),

successively leads to the following expression, for all iterations, k = 1, ..., n, and

all agents 1 ≤ i ≤ k ≤ j ≤ n:

ui (qi, q̄i)− xki − ui (qi, q̄i) + xk−1
i

= uk (qk, q̄k)− xkk − uk (qk, q̄0) + xk−1
k

= uj (qj , q̄0)− xkj − uj (qj , q̄0) + xk−1
j

Hence, for all k = 1, ..., n, and all agents 1 ≤ i ≤ k ≤ j ≤ n:

xk−1
i − xki

= uk (qk; q̄k)− uk (qk; q̄0) + xk−1
k − xkk

= xk−1
j − xkj

By budget balance,
∑
j x

k
j − x

k−1
j = 0, yielding

xkk − xk−1
k =

n− 1

n
[uk (qk; q̄k)− uk (qk; q̄0)]

xkj − xk−1
j = − 1

n
[uk (qk; q̄k)− uk (qk; q̄0)] for all j 6= k
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Summing up over all iterations k yields the following:

xn1 − x0
1 =

n∑
k>1

(
xk1 − xk−1

1

)
+ x1

1 − x0
1

= − 1

n

n∑
k>1

[uk (qk; q̄k)− uk (qk; q̄0)] +

(
1− 1

n

)
[u1 (q1; q̄1)− u1 (q1; q̄0)]

= [u1 (q1; q̄1)− u1 (q1; q̄0)]− 1

n

n∑
k=1

[uk (qk; q̄k)− uk (qk; q̄0)]

Likewise, for all i ∈ N :

xni − x0
i = [ui (qi; q̄i)− ui (qi; q̄0)]− 1

n

n∑
k=1

[uk (qk; q̄k)− uk (qk; q̄0)]

Finally, upon noticing that xni = x (q, q̄),

xi (q; q̄) = ξi (r0, C − C (nq̄0)) + xi (q, q̄0)

+ [ui (qi; q̄i)− ui (qi; q̄0)]− 1

n

n∑
k=1

[uk (qk; q̄k)− uk (qk; q̄0)] .

A.6 Proof of tightness of the characterization of EE by

SRRN and GS

Consider a profile (q, q̄1) such that q̄1 = (q̄1, q̄1, ..., q̄1) with q̄1 6= q̄0 then:

xEEi (q, q̄1)− xEEi (q̄1, q̄1) =
C(nq̄0)

n
+ ξi (r0, C − C (nq̄0))

+ [ui (qi, q̄1)− ui (qi; q̄0)]− 1

n

n∑
k=1

[uk (qk, q̄1)− uk (qk, q̄0)]

−
(
C(nq̄0)

n
+ ξi (r̄0, C − C (nq̄0))

+ [ui (q̄1, q̄1)− ui (q̄1, q̄0)]− 1

n

n∑
k=1

[uk (q̄1, q̄1)− uk (q̄1, q̄0)]

)
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where r̄0 ≡ r (q̄1, q̄0). Hence,

xEEi (q, q̄1)− xEEi (q̄1, q̄1) = ξi (r0, C − C (nq̄0)) + [ui (qi, q̄1)− ui (qi, q̄0)]− 1

n

n∑
k=1

[uk (qk, q̄1)− uk (qk, q̄0)]

−

(
ξi (r̄0, C − C (nq̄0)) + [ui (q̄1, q̄1)− ui (q̄1, q̄0)]− 1

n

n∑
k=1

[uk (q̄1, q̄1)− uk (q̄1, q̄0)]

)

which simplifies into:

xEEi (q, q̄1)− xEEi (q̄1, q̄1) = ξi (r0, C − C (nq̄0))− 1

n
(C (nq̄1)− C (nq̄0))

+ (ui (qi, q̄1)− ui (q̄1, q̄1)− [ui (qi, q̄0)− ui (q̄1, q̄0)])

− 1

n

n∑
k=1

(uk (qk, q̄1)− uk (q̄1, q̄1)− [uk (qk, q̄0)− uk (q̄1, q̄0)])

The above expression reveals that xEEi (q, q̄1)−xEEi (q̄1, q̄1) depends on ui,

hence cannot be driven only by the cost sharing function ξ. In other words, it

cannot be the case that:

xEEi (q, q̄1)− xEEi (q̄1, q̄1) = ξi (r1, C − C (nq̄1)) ,

as required by SRUN.

B Section 5 Proofs

B.1 Proof of Proposition 3

Let q = q̄. By UWMC,

xi(q̄, q̄) = xj(q̄, q̄) for all i, j ∈ N

=⇒ xi(q̄, q̄) =
C
(
Q̄
)

n
for all i ∈ N

Without any loss of generality, assume that r1 ≤ r2 ≤ ... ≤ rn. Let fi : w 7→
r (w, q̄i) map consumption to individual responsibility for agent i. By construc-

tion, fi is monotonic and strictly increasing. Its inverse, gi : v 7→ f−1
i (v) is well

defined and is also monotonic and strictly increasing. Note that gi (ri) = qi for

all i ∈ N .
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Define the following profile:

q1= (q1, g2 (r1) , ..., gi (r1) , ..., gn (r1)) .

Note that, by construction
(
q1, q̄

)
is such that

r1
i = r1,

for all i ∈ N.
Applying SR with profile

(
q1; q̄

)
yields:

xi(q
1; q̄)− xi(q̄; q̄) = ξi(r

1, C − C(Q̄)),

where ξi(r, C − C(Q̄)) is symmetric in r. Since all r1
i are identical, we have

ξi(r
1, C − C(Q̄)) =

1

n

[
C
(
Q1
)
− C(Q̄)

]
,

where

Q1 =

n∑
i=1

q1
i =

n∑
i=1

gi (r1) .

Similarly, let

q2= (q1, q2, g3 (r2) , ..., gi (r2) , ..., gn (r2)) .

Again by construction
(
q2, q̄

)
is such that

r2
i = r2,

for all i = 2, ..., n.

Applying now SR with profile
(
q2; q̄

)
yields:

xi(q
2, q̄)− xi(q̄, q̄) = ξi(r

2, C − C(Q̄)),

where ξi(r, C − C(Q̄)) is symmetric in r, therefore

ξi(r
2, C − C(Q̄)) = ξj(r

2, C − C(Q̄))

for all i, j ≥ 2. In words, agents 2, ..., n are assigned the same cost share.

Moreover, by assumption r1 ≤ r2. Applying IHR between profiles
(
q1, q̄

)
and
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(
q2, q̄

)
yields that agent 1’s contribution is the same under both profiles:

ξ1(r1;C − C(Q̄)) = ξ1(r2;C − C(Q̄)) =
1

n

[
C
(
Q1
)
− C(Q̄)

]
,

Thus, agents 2, ..., n share the remaining cost equally:

ξi(r
2;C − C(Q̄)) =

1

n− 1

[
C
(
Q2
)
− C

(
Q̄
)
− 1

n

[
C
(
Q1
)
− C(Q̄)

]]
=

1

n− 1

[
C
(
Q2
)
− C

(
Q1
)]

+
1

n

[
C
(
Q1
)
− C(Q̄)

]
for all i ≥ 2, where

Q2 =

n∑
i=1

q2
i = q1 +

n∑
i=2

gi (r2) ≥ Q1.

Alternatively,

ξi(r
2;C − C(Q̄))− ξi(r1;C − C(Q̄)) =

1

n− 1

[
C
(
Q2
)
− C

(
Q1
)]

all i ≥ 2.

Proof. Similarly, for all k ≥ 2, we define

qk = (q1, q2, ..., qk, gk+1 (rk) , ..., gn (rk))

and obtain by SR that

xi(q
k; q̄)− xi(q̄; q̄) = ξi(r

k, C − C(Q̄)),

for all i ∈ N . It follows that

ξi(r
k;C − C(Q̄))− ξi(rk−1;C − C(Q̄)) = 0 for all i < k, and

ξi(r
k;C − C(Q̄))− ξi(rk−1;C − C(Q̄)) =

1

n− k + 1

[
C
(
Qk
)
− C

(
Qk−1

)]
for all i ≥ k,

with

Qk =

n∑
i=1

qki =

k−1∑
i=1

qi +

n∑
i=k

gi (rk) .
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Observe that

Qk+1 −Qk =

n∑
i=k+1

[gi (rk+1)− gi (rk)] ≥ 0

by monotonicity of the gi’s. It follows that xi+1

(
qk, q̄

)
≥ xi

(
qk, q̄

)
, all i ∈ N.

It follows from our initial ordering of the agents that agents with a higher ri

pay a higher bill for all k.

To sum up, upon observing that rn = r (as associated to (q, q̄)), we obtain

xk (q, q̄)− xk (q̄, q̄) =

k∑
i=1

1

n− i+ 1

[
C
(
Qi
)
− C

(
Qi−1

)]
where Q0 = Q̄. Finally,

xk (q, q̄) =
1

n
C
(
Q̄
)

+
k∑
i=1

1

n− i+ 1

[
C
(
Qi
)
− C

(
Qi−1

)]
=

[
1

n
− 1

n

]
C
(
Q0
)

+

[
1

n
− 1

n− 1

]
C
(
Q1
)

+

[
1

n− 1
− 1

n− 2

]
C
(
Q2
)

+...+

[
1

n− i+ 1
− 1

n− i

]
C
(
Qi
)

+ ...+
1

n− k + 1
C
(
Qk
)

xk (q, q̄) =
C
(
Qk
)

(n− k + 1)
−
k−1∑
i=1

C
(
Qi
)

(n− i) (n− i+ 1)
=
C
(
Qk
)

n− k
−

k∑
i=1

C
(
Qi
)

(n− i) (n− i+ 1)

with

Qk =

k−1∑
i=1

qi +

n∑
i=k

gi (rk) .

B.2 Proof of Proposition 3

Let q̄0 ∈ R+ be a reference level of needs and denote by q̄0 = (q̄0, q̄0, ..., q̄0) ∈ Rn+
the associated reference vector. Consider the profile (q, q̄0). By budget balance

and Equal Treatment of Equals,

xi (q̄0; q̄0) =
C(nq̄0)

n
.

Without loss of generality, assume that q1 ≤ q2 ≤ ... ≤ qn, so that r0,1 ≤ r0,2 ≤
... ≤ r0,n, where r0,i = r (qi, q̄0) for all i ∈ N .
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Define

qk = (q1, q2, ..., qk−1, qk, ..., qk)

for all k = 1...n.

Notice that q1 = (q1, q1, ..., q1); hence by Equal Treatment of Equals, xi
(
q1; q̄0

)
=

C (nq1) /n so that

xi
(
q1; q̄0

)
− xi (q̄0; q̄0) =

1

n
[C (nq1)− C (nq̄0)]

for all i ∈ N, so that

xi
(
q1; q̄0

)
=
C (nq1)

n

Similarly, for k ≥ 2, ERRN yields

xi
(
qk; q̄0

)
− xi (q̄0; q̄0) = ξi

(
rk0 , C − C (nq̄0)

)
and

xi
(
qk−1; q̄0

)
− xi (q̄0; q̄0) = ξi

(
rk−1

0 , C − C (nq̄0)
)

with rk0,i = r
(
qki , q̄0

)
and rk−1

0,i = r
(
qk−1
i , q̄0

)
. Therefore, by subtraction,

xi
(
qk; q̄0

)
− xi

(
qk−1; q̄0

)
= ξi

(
rk0 , C − C (nq̄0)

)
− ξi

(
rk−1

0 , C − C (nq̄0)
)

for all i ∈ N and summing up over all agents, we find

n∑
i=1

[
xi
(
qk; q̄0

)
− xi

(
qk−1; q̄0

)]
= C

(
Qk
)
− C

(
Qk−1

)
,

where Qk−1 =
∑n
l=1 q

k−1
l =

∑k−1
l=1 ql + (n− k + 1) qk−1 and Qk =

∑n
l=1 q

k
l =∑k

l=1 ql + (n− k) qk.

Observe that if i < j then rk−1
0,i ≤ r

k−1
0,j and rk0,i ≤ rk0,j . Moreover for all 1 ≤ i ≤

k − 1, qk−1
i = qki = qi, and rk−1

0,i = rk0,i = r (qi, q̄0). Therefore, by IHR,

xi
(
qk; q̄0

)
− xi

(
qk−1; q̄0

)
= 0,

for all 1 ≤ i ≤ k−1. It follows that the previous summation can truncated from

below:
n∑
i=k

[
xi
(
qk; q̄0

)
− xi

(
qk−1; q̄0

)]
= C

(
Qk
)
− C

(
Qk−1

)
.
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Moreover, for all i, j ≥ k, we have qk−1
i = qk−1

j = qk−1 and qki = qkj = qk.

Therefore, by Equal Treatment of Equals,

xi
(
qk−1, q̄0

)
= xj

(
qk−1, q̄0

)
all i, j ≥ k, and

xi
(
qk, q̄0

)
= xj

(
qk, q̄0

)
.

Hence,

xi
(
qk, q̄0

)
− xi

(
qk−1, q̄0

)
=

1

n− k + 1

[
C
(
Qk
)
− C

(
Qk−1

)]
all i ≥ k, with the convention that Q0 = nq̄0.

Finally, upon observing that qn = q, it follows by summation that

xi (q, q̄0)− xi (q̄0, q̄0) =

i∑
k=1

1

n− k + 1

[
C
(
Qk
)
− C

(
Qk−1

)]
.

Define q̄1
0 = (q̄1, q̄0, ..., q̄0). Applying GS between (q, q̄0) and

(
q, q̄1

0

)
yields,

for all j 6= 1:

u (q1, q̄1)− x1
1 − u (q1, q̄0) + x0

1

= u (qj , q̄0)− x1
j − u (qj , q̄0) + x0

j

where x0
j = xj (q, q̄0) and x1

j = xj
(
q, q̄1

0

)
for all j ∈ N . This yields

x0
j − x1

j = u (q1, q̄1)− u (q1, q̄0) + x0
1 − x1

1.

Since total consumption is unchanged, we have, by budget balance

x1
1 − x0

1 =
n− 1

n
[u (q1, q̄1)− u (q1, q̄0)]

x1
j − x0

j = − 1

n
[u (q1, q̄1)− u (q1, q̄0)]

all j 6= 1.

Iterating and applying GS to profiles
(
q, q̄k0

)
where q̄k0 = (q̄1, q̄2, ..., q̄k, q̄0, ..., q̄0),

successively leads to the following expression, for all iterations, k = 1, ..., n, and
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all agents 1 ≤ i ≤ k ≤ j ≤ n:

u (qi, q̄i)− xki − u (qi, q̄i) + xk−1
i

= u (qk, q̄k)− xkk − u (qk, q̄0) + xk−1
k

= u (qj , q̄0)− xkj − u (qj , q̄0) + xk−1
j

Hence, for all k = 1, ..., n, and all agents 1 ≤ i ≤ k ≤ j ≤ n:

xk−1
i − xki

= u (qk, q̄k)− u (qk, q̄0) + xk−1
k − xkk

= xk−1
j − xkj

Since total consumption does not change from
(
q, q̄k−1

0

)
to
(
q, q̄k0

)
, but only

needs, budget balance implies
∑
j

(
xkj − x

k−1
j

)
= 0. Therefore,

xkj − xk−1
j = − 1

n
[u (qk, q̄k)− u (qk, q̄0)] for all j 6= k

xkk − xk−1
k =

n− 1

n
[u (qk, q̄k)− u (qk, q̄0)]

Summing up over all iterations k = 1, ..., n yields the following for agent 1:

xn1 − x0
1 =

n∑
k>1

(
xk1 − xk−1

1

)
+ x1

1 − x0
1

= − 1

n

n∑
k>1

[u (qk, q̄k)− u (qk, q̄0)] +
n− 1

n
[u (q1, q̄1)− u (q1, q̄0)]

= [u (q1, q̄1)− u (q1, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

Similarly, for all i > 1:

xni − x0
i = [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]
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Finally, observing that q̄n0 = q̄ yields the following:

xi (q, q̄) = xi (q, q̄n0 ) =
C(nq̄0)

n
+

i∑
k=1

1

n− k + 1

[
C
(
Qk
)
− C

(
Qk−1

)]
+ [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

=
C(n inf qj)

n
+

i−1∑
k=1

1

n− k
[
C
(
Qk+1

)
− C

(
Qk
)]

+ [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

Alternatively,

xi (q, q̄) =
C
(
Qi
)

n− i+ 1
−

i−1∑
k=1

C
(
Qk
)

(n− k) (n− k + 1)

+ [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

where Qk =
∑k
l=1 ql + (n− k) qk for all k = 1, ..., n.

B.3 Proof of Proposition 4

Let q = q̄, By UWMC,

xi(q̄; q̄) = xj(q̄; q̄) for all i, j ∈ N

=⇒ xi(q̄; q̄) =
C
(
Q̄
)

n

Without any loss of generality, assume that r1 ≤ r2 ≤ ... ≤ rn. Let fi : w 7→
r (w, q̄i) map consumption to individual responsibility for agent i. By construc-

tion, fi is monotonic and strictly increasing. Its inverse, gi : v 7→ f−1
i (v) is well

defined and is also monotonic and strictly increasing. Note that gi (ri) = qi for

all i ∈ N .

Define the following profile:

qn= (g1 (rn) , ..., gi (rn) , ..., gn−1 (rn) , qn) .
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Note that, by construction (qn, q̄) is such that

rni = rn,

for all i ∈ N.
Applying SR with profile (qn; q̄) yields:

xi(q
n; q̄)− xi(q̄; q̄) = ξi(r

n, C − C(Q̄)),

where ξi(r, C − C(Q̄)) is symmetric in r. Since all rni are identical, we have

ξi(r
n, C − C(Q̄)) =

1

n

[
C (Qn)− C(Q̄)

]
,

where

Qn =

n∑
i=1

qni =

n∑
i=1

gi (rn) .

This gives

xi(q
n; q̄) =

1

n
C (Qn)

Similarly, let

qn−1= (g1 (rn−1) , ..., gi (rn−1) , ..., gn−2 (rn−1) , qn−1, qn) .

Again by construction
(
qn−1, q̄

)
is such that

rn−1
i = rn−1,

for all i = 1, ..., n− 1.

Applying now SR with profile
(
qn−1; q̄

)
yields:

xi(q
n−1, q̄)− xi(q̄, q̄) = ξi(r

n−1, C − C(Q̄)),

where ξi(r, C − C(Q̄)) is symmetric in r, therefore

ξi(r
n−1, C − C(Q̄)) = ξj(r

n−1, C − C(Q̄))

for all i, j ≤ n−1. In words, agents 1, ..., n−1 are assigned the same cost share.

Moreover, by assumption rn ≥ rn−1. Applying ILR between profiles (qn, q̄) and
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(
qn−1, q̄

)
yields that agent n’s contribution is the same under both profiles:

ξn(rn−1;C − C(Q̄)) = ξn(rn;C − C(Q̄)) =
1

n

[
C (Qn)− C(Q̄)

]
,

Thus, agents 1, ..., n− 1 share the remaining cost equally:

ξi(r
n−1;C − C(Q̄)) =

1

n− 1

[
C
(
Qn−1

)
− C

(
Q̄
)
− 1

n

[
C (Qn)− C(Q̄)

]]
=

1

n

[
C (Qn)− C(Q̄)

]
− 1

n− 1

[
C (Qn)− C

(
Qn−1

)]
for all i ≤ n− 1, where

Qn−1 =

n∑
i=1

qn−1
i =

n−1∑
i=1

gi (rn−1) + qn ≤ Qn.

Alternatively,

ξi(r
n−1;C − C(Q̄))− ξi(rn;C − C(Q̄)) = − 1

n− 1

[
C (Qn)− C

(
Qn−1

)]
all i ≤ n− 1.

Similarly, for all k ≤ n− 1, we define

qk = (g1 (rk) , ..., gk−1 (rk) , qk, ..., qn−1, qn)

and obtain by SR that

xi(q
k; q̄)− xi(q̄; q̄) = ξi(r

k, C − C(Q̄)),

for all i ∈ N . It follows that

ξi(r
k;C − C(Q̄))− ξi(rk+1;C − C(Q̄)) = 0 for all i > k, and

ξi(r
k;C − C(Q̄))− ξi(rk+1;C − C(Q̄)) = −1

k

[
C
(
Qk+1

)
− C

(
Qk
)]

for all i ≤ k,

with

Qk =

n∑
i=1

qki =

k∑
i=1

gi (rk) +

n∑
i=k+1

qi.
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Observe that

Qk+1 −Qk =

k∑
i=1

[gi (rk+1)− gi (rk)] ≥ 0

by monotonicity of the gi’s. It follows that xi+1

(
qk, q̄

)
≥ xi

(
qk, q̄

)
, all i ∈ N.

It follows from our initial ordering of the agents that agents with a higher ri

pay a higher bill for all k.

To sum up, upon observing that r1 = r (as associated to (q, q̄)), we obtain

xk (q, q̄)− xk (q̄, q̄) =
1

n

[
C (Qn)− C(Q̄)

]
−
n−1∑
i=k

1

i

[
C
(
Qi+1

)
− C

(
Qi
)]

where Q1 = Q. Finally,

xk (q, q̄) =
1

n
C (Qn)−

n−1∑
i=k

1

i

[
C
(
Qi+1

)
− C

(
Qi
)]

=

[
1

n
− 1

n− 1

]
C (Qn) +

[
1

n− 1
− 1

n− 2

]
C
(
Qn−1

)
+

[
1

n− 2
− 1

n− 3

]
C
(
Qn−2

)
+...+

[
1

i
− 1

i− 1

]
C
(
Qi
)

+ ...+
1

k
C
(
Qk
)

xk (q, q̄) =
C
(
Qk
)

k − 1
−

n∑
i=k

C
(
Qi
)

i (i− 1)
=
C
(
Qk
)

k
−

n∑
i=k+1

C
(
Qi
)

i (i− 1)

with

Qk =

k∑
i=1

gi (rk) +

n∑
i=k+1

qi.

B.4 Proof of Proposition 5

Let q̄0 ∈ R+ be a reference level of needs and denote by q̄0 = (q̄0, q̄0, ..., q̄0) ∈ Rn+
the associated reference vector. Consider the profile (q, q̄0). By budget balance

and Equal Treatment of Equals,

xi (q̄0; q̄0) =
C(nq̄0)

n
.

Without loss of generality, assume that q1 ≤ q2 ≤ ... ≤ qn, so that r0,1 ≤ r0,2 ≤
... ≤ r0,n, where r0,i = r (qi, q̄0) for all i ∈ N .

Define

qk = (qk, ..., qk, qk+1, ..., qn−1, qn)
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for all k = 1...n.

Notice that qn = (qn, qn, ..., qn); hence by Equal Treatment of Equals, xi (qn; q̄0) =

C (nqn) /n so that

xi (qn; q̄0)− xi (q̄0; q̄0) =
1

n
[C (nqn)− C (nq̄0)]

for all i ∈ N.
Similarly, for k ≤ n− 1, ERRN yields

xi
(
qk+1; q̄0

)
− xi (q̄0; q̄0) = ξi

(
rk+1

0 , C − C (nq̄0)
)

and

xi
(
qk; q̄0

)
− xi (q̄0; q̄0) = ξi

(
rk0 , C − C (nq̄0)

)
with rk+1

0,i = r
(
qk+1
i , q̄0

)
and rk0,i = r

(
qki , q̄0

)
. Therefore, by subtraction,

xi
(
qk; q̄0

)
− xi

(
qk+1; q̄0

)
= ξi

(
rk0 , C − C (nq̄0)

)
− ξi

(
rk+1

0 , C − C (nq̄0)
)

for all i ∈ N and summing up over all agents, we find

n∑
i=1

[
xi
(
qk; q̄0

)
− xi

(
qk+1; q̄0

)]
= −

[
C
(
Qk+1

)
− C

(
Qk
)]
,

where Qk =
∑n
l=1 q

k
l = kqk+

∑n
l=k+1 ql and Qk+1 =

∑n
l=1 q

k+1
l = (k − 1) qk+1+∑n

l=k+1 ql.

Observe that if i < j then rk0,i ≤ rk0,j and rk+1
0,i ≤ r

k+1
0,j . Moreover for all k+ 1 ≤

i ≤ n, qki = qk+1
i = qi, and rk0,i = rk+1

0,i = r (qi, q̄0). Therefore, by ILR,

xi
(
qk; q̄0

)
− xi

(
qk+1; q̄0

)
= 0,

for all k+1 ≤ i ≤ n. It follows that the previous summation can truncated from

above:

k∑
i=1

[
xi
(
qk; q̄0

)
− xi

(
qk+1; q̄0

)]
= −

[
C
(
Qk+1

)
− C

(
Qk
)]
,

where 1 ≤ k ≤ n− 1.

Moreover, for all i, j ≤ k, we have qk+1
i = qk+1

j = qk+1 and qki = qkj = qk .
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Therefore, by Equal Treatment of Equals,

xi
(
qk+1, q̄0

)
= xj

(
qk+1, q̄0

)
all i, j ≤ k, and

xi
(
qk, q̄0

)
= xj

(
qk, q̄0

)
.

Hence,

xi
(
qk, q̄0

)
− xi

(
qk−1, q̄0

)
= −1

k

[
C
(
Qk+1

)
− C

(
Qk
)]

all i ≤ k.

Finally, upon observing that q1 = q, it follows by summation that

xi (q, q̄0)− xi (q̄0, q̄0) =
1

n
[C (nqn)− C (nq̄0)]−

n−1∑
k=i

1

k

[
C
(
Qk+1

)
− C

(
Qk
)]

,

so that

xi (q, q̄0) =
1

n
C (nqn)−

n−1∑
k=i

1

k

[
C
(
Qk+1

)
− C

(
Qk
)]

.

Define q̄1
0 = (q̄1, q̄0, ..., q̄0). Applying GS between (q, q̄0) and

(
q, q̄1

0

)
yields,

for all j 6= 1:

u (q1, q̄1)− x1
1 − u (q1, q̄0) + x0

1

= u (qj , q̄0)− x1
j − u (qj , q̄0) + x0

j

where x0
j = xj (q, q̄0) and x1

j = xj
(
q, q̄1

0

)
for all j ∈ N . This yields

x0
j − x1

j = u (q1, q̄1)− u (q1, q̄0) + x0
1 − x1

1.

Since total consumption is unchanged, we have, by budget balance

x1
1 − x0

1 =
n− 1

n
[u (q1, q̄1)− u (q1, q̄0)]

x1
j − x0

j = − 1

n
[u (q1, q̄1)− u (q1, q̄0)]

all j 6= 1.

Iterating and applying GS to profiles
(
q, q̄k0

)
where q̄k0 = (q̄1, q̄2, ..., q̄k, q̄0, ..., q̄0),

successively leads to the following expression, for all iterations, k = 1, ..., n, and
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all agents 1 ≤ i ≤ k ≤ j ≤ n:

u (qi, q̄i)− xki − u (qi, q̄i) + xk−1
i

= u (qk, q̄k)− xkk − u (qk, q̄0) + xk−1
k

= u (qj , q̄0)− xkj − u (qj , q̄0) + xk−1
j

Hence, for all k = 1, ..., n, and all agents 1 ≤ i ≤ k ≤ j ≤ n:

xk−1
i − xki

= u (qk, q̄k)− u (qk, q̄0) + xk−1
k − xkk

= xk−1
j − xkj

Since total consumption does not change from
(
q, q̄k−1

0

)
to
(
q, q̄k0

)
, but only

needs, budget balance implies
∑
j

(
xkj − x

k−1
j

)
= 0. Therefore,

xkj − xk−1
j = − 1

n
[u (qk, q̄k)− u (qk, q̄0)] for all j 6= k

xkk − xk−1
k =

n− 1

n
[u (qk, q̄k)− u (qk, q̄0)]

Summing up over all iterations k = 1, ..., n yields the following for agent 1:

xn1 − x0
1 =

n∑
k>1

(
xk1 − xk−1

1

)
+ x1

1 − x0
1

= − 1

n

n∑
k>1

[u (qk, q̄k)− u (qk, q̄0)] +
n− 1

n
[u (q1, q̄1)− u (q1, q̄0)]

= [u (q1, q̄1)− u (q1, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

Similarly, for all i > 1:

xni − x0
i = [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]
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Finally, observing that q̄n0 = q̄ yields the following:

xi (q, q̄) = xi (q, q̄n0 ) =
1

n
C (Qn)−

n−1∑
k=i

1

k

[
C
(
Qk+1

)
− C

(
Qk
)]

+ [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

Alternatively,

xi (q, q̄) =
C
(
Qi
)

i
−

n−1∑
k=i+1

C
(
Qk
)

k (k − 1)

+ [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

where Qk = kqk +
∑n
l=k+1 ql for all k = 1, ..., n.
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C Supplementary material: Calculations not in-

tended for publication

C.1 Decreasing Returns to Scale: Quadratic Costs

SCE0 with absolute responsibility

Recall that

xSCE (ρ) =
C
(
Q̄
)

N
+

ˆ ρ

z=0

1

N −Nr (z)
C ′
(
Q̂ (z)

) dQ̂ (z)

dρ
dz,

where

Q̂ (ρ) =
∑
s∈S

[ˆ +∞

0

inf{gs (z) , gs (ρ)}nrs (z) dz

]
.

Under the absolute responsibility view,

dQ̂ (ρ)

dρ
=
∑
s∈S

(Ns −Nr
s (ρ)) g′s (ρ) = N −Nr (ρ) ,

with the second equality following from the fact that gs (r) = q̄s + ρ. Hence,

xSCE (ρ) =
C
(
Q̄
)

N
+

ˆ ρ

z=0

C ′
(
Q̂ (z)

)
dz,

with

Q̂s (ρ) =

ˆ ρ

0

(q̄s + z)nrs (z) dz + (Ns −Nr
s (ρ)) (q̄s + ρ)

= q̄sNs +

ˆ ρ

0

znrs (z) dz + (Ns −Nr
s (ρ)) ρ

= q̄sNs +

ˆ +∞

0

min{z, ρ}nrs (z) dz

so that

Q̂ (ρ) = Q̄+

ˆ r

0

znr (z) dz + (N −Nr (ρ)) ρ

= Q̄+

ˆ +∞

0

min{z, ρ}nr (z) dz.
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Consider the case where C (Q) = c
2Q

2. It follows that C ′ (Q) = cQ, so that

xSCE0 (ρ) =
cQ̄2

2N
+ c

ˆ ρ

z=0

Q̂ (z) dz

=
cQ̄2

2N
+ c

ˆ ρ

z=0

[
Q̄+

ˆ +∞

y=0

min{y, z}nr (y) dy

]
dz

=
cQ̄2

2N
+ cQ̄ρ+ c

ˆ +∞

y=0

nr (y)

ˆ ρ

z=0

min{y, z}dzdy

=
cQ̄2

2N
+ cQ̄ρ+ c

ˆ +∞

y=0

nr (y)

[ˆ y

z=0

zdz +

ˆ ρ

z=y

ydz

]
dy

=
cQ̄2

2N
+ cQ̄ρ+ c

ˆ +∞

y=0

nr (y)

[
y2

2
+ y (ρ− y)

]
dy,

=
cQ̄2

2N
+ cQ̄ρ+ c

ˆ +∞

y=0

nr (y)

[
yρ− y2

2

]
dy.

Upon noticing that Q̄ +
´ +∞
y=0

nr (y) ydy = Q under absolute responsibility, the

above expression rewrites as follows:

xSCE0 (ρ) =
cQ̄2

2N
− c
ˆ +∞

y=0

nr (y)
y2

2
dy + cQρ.

By budget balance,

c
Q2

2
=

ˆ +∞

z=0

xSCE0 (z)nr (z) dz

= N

[
cQ̄2

2N
− c
ˆ +∞

y=0

nr (y)
y2

2
dy

]
+ cQ

ˆ +∞

z=0

znr(z)dz

= N

[
cQ̄2

2N
− c
ˆ +∞

y=0

nr (y)
y2

2
dy

]
+ cQ

(
Q− Q̄

)
.

Thus,
cQ̄2

2N
− c
ˆ +∞

y=0

nr (y)
y2

2
dy =

1

N

(
cQ2

2
− cQ

(
Q− Q̄

))
.

Finally, it follows that

xSCE0 (ρ) =
1

N

[
cQ

(
Q̄− Q

2

)]
+ cQρ

=
1

N

cQ2

2
+ cQ

(
ρ− Q− Q̄

N

)
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Upon recalling that ρ = q − q̄s under absolute responsibility, individual contri-

butions are a function of the sole four variables q, q̄s, Q, Q̄:

xSCE0
(
q, q̄s, Q, Q̄

)
=

1

N

cQ2

2
+ cQ

(
q − q̄s −

Q− Q̄
N

)
.

SCE0 with relative responsibility

Recall that

xSCE (ρ) =
C
(
Q̄
)

N
+

ˆ ρ

z=0

1

N −Nr (z)
C ′
(
Q̂ (z)

) dQ̂ (z)

dz
dz,

where

Q̂ (ρ) =
∑
s∈S

[ˆ +∞

0

inf{gs (z) , gs (ρ)}nrs (z) dz

]
=
∑
s∈S

[ˆ ρ

0

gs (z)nrs (z) dz + (Ns −Nr
s (ρ)) gs (ρ)

]

Under relative responsibility, ρ = (q − q̄s) /q̄s so that gs (ρ) = q̄s (1 + ρ). It

follows that g′s (ρ) = q̄s and

dQ̂s (ρ)

dρ
= (Ns −Nr

s (ρ)) g′s (ρ) = (Ns −Nr
s (ρ)) q̄s.

We now make an additional assumption. Namely, we posit that responsibility

is evenly spread across types, so that its distribution is independent of needs,

q̄s:

Nr
s (ρ) = α (ρ)Ns ∀s ∈ S,

for some increasing function α : R+ → [0, 1] which we take to be differentiable.

This yields:
dQ̂ (ρ)

dρ
= (1− α (ρ)) Q̄.

Also, because N −Nr (r) = (1− α (ρ))N , we have

1

N −Nr (z)

dQ̂ (ρ)

dρ
=
Q̄

N
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and xSCE0 (r) simplifies to

xSCE0 (ρ) =
C
(
Q̄
)

N
+
Q̄

N

ˆ ρ

z=0

C ′
(
Q̂ (z)

)
dz.

Upon noticing that nrs (ρ) = α′ (ρ)Ns we get

Q̂ (ρ) =

ˆ +∞

0

∑
s∈S

inf{gs (z) , gs (ρ)}Nsα′ (z) dz

=

ˆ +∞

0

inf{
∑
s∈S

Nsgs (z) ,
∑
s∈S

Nsgs (ρ)}α′ (z) dz

where the summation sign enters the min operator because, for any s ∈ S,

gs (z) ≤ gs (ρ) if and only if z ≤ ρ. Therefore,

Q̂ (ρ) =

ˆ +∞

0

inf{
∑
s∈S

Nsq̄s (1 + z) ,
∑
s∈S

Nsq̄s (1 + ρ)}α′ (z) dz

= Q̄

[
1 +

ˆ +∞

0

inf{z, ρ}α′ (z) dz
]

Assuming C (Q) = 1
2cQ

2, the expression for the SCE0 solution follows:

xSCE (ρ) =
cQ̄2

2N
+
Q̄c

N

ˆ ρ

z=0

Q̂ (z) dz

=
cQ̄2

2N
+
Q̄c

N

ˆ ρ

z=0

Q̄

[
1 +

ˆ +∞

y=0

inf{y, z}α′ (y) dy

]
dz

=
cQ̄2

2N
+
Q̄2cρ

N
+
Q̄2c

N

ˆ +∞

y=0

ˆ r

z=0

inf{y, z}α′ (y) dydz

=
cQ̄2

2N
+
Q̄2cρ

N
+
Q̄2c

N

ˆ +∞

y=0

α′ (y)

[ˆ y

z=0

zdz + y

ˆ ρ

z=y

dz

]
dy

=
cQ̄2

2N
+
Q̄2cρ

N
+
Q̄2c

N

ˆ +∞

y=0

nr (y)

N

[
y2

2
+ y (ρ− y)

]
dy

=
cQ̄2

2N
+
cQ̄2

N
ρ+

cQ̄2

N2

ˆ +∞

y=0

[(
ρ− y

2

)
ynr (y)

]
dy

=
cQ̄2

2N
− cQ̄2

2N2

ˆ +∞

y=0

y2nr (y) dy +
cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]
ρ
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For households of type s this writes

xSCE0 (ρ) =
cQ̄2

2N
− cQ̄2

2N2

ˆ +∞

y=0

y2nr (y) dy +
cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

](
q − q̄s
q̄s

)
=

{
cQ̄2

2N
− cQ̄2

2N2

ˆ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]}
+
cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]
q

q̄s

Also, by budget balance,

cQ2

2
=
∑
s

ˆ +∞

z=0

xSCE0(z)nrs(z)dz

=
∑
s

ˆ +∞

z=0

{
cQ̄2

2N
− cQ̄2

2N2

ˆ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]}
nrs(z)dz

+
∑
s

ˆ
z

cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]
q

q̄s
nrs(z)dz

=

{
cQ̄2

2N
− cQ̄2

2N2

ˆ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]}∑
s

ˆ +∞

z=0

nrs(z)dz

+
cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]∑
s

ˆ
z

(z + 1)nrs(z)dz

=

{
cQ̄2

2N
− cQ̄2

2N2

ˆ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]}
N

+
cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

] [∑
s

Qs
q̄s

]

because z + 1 = gs (z) /q̄s and
´
z

(z + 1)nrs(z)dz =
´
z

[gs (z) /q̄s]n
r
s(z)dz =´

q
(q/q̄s)ns(q)dq = Qs/q̄s.

Therefore,{
cQ̄2

2N
− cQ̄2

2N2

ˆ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]}
=

1

N

{
cQ2

2

−cQ̄
2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

] [∑
s

Qs
q̄s

]}
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Finally,

xSCE0 (ρ) =
1

N

{
cQ2

2
− cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

][∑
s

Qs
q̄s

]}
+
cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

]
q

q̄s

=
1

N

cQ2

2
+
cQ̄2

N

[
1 +

1

N

ˆ +∞

y=0

ynr (y) dy

](
q

q̄s
− 1

N

∑
s

Qs
q̄s

)
.

Observing thatNs(q) = Nr
s

(
q−q̄s
q̄s

)
implies ns(q)dq = 1

q̄s
nrs

(
q−q̄s
q̄s

)
dq = nrs (y) dy.

Hence,

xSCE0 (ρ) =
1

N

cQ2

2
+
cQ̄2

N

[
1 +

1

N

∑
s

ˆ +∞

q=q̄s

q − q̄s
q̄s

ns (q) dq

](
q

q̄s
− 1

N

∑
s

Qs
q̄s

)

=
1

N

cQ2

2
+
cQ̄2

N

[
1 +

1

N

∑
s

(
Qs
q̄s
−Ns

)](
q

q̄s
− 1

N

∑
s

Qs
q̄s

)

=
1

N

cQ2

2
+
cQ̄2

N

[
1

N

∑
s

Qs
q̄s

](
q

q̄s
− 1

N

∑
s

Qs
q̄s

)
.

Moreover, the distributional assumption that Nr
s (r) /Ns = α(ρ) for all s implies

that:

Qs =

ˆ +∞

q̄s

qns (q) dq

=

ˆ +∞

0

q̄s (1 + y)ns (y) dy

= q̄s

ˆ +∞

0

(1 + y)α′ (y)Nsdy

= Q̄s

ˆ +∞

0

(1 + y)α′ (y) dy

This says that Qs/Q̄s =
´ +∞

0
(1 + y)α′ (y) dy is independent of s. Hence, for

all s,

Qs/Q̄s = Q/Q̄.
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Therefore,

xSCE0 (q, s) =
1

N

cQ2

2
+
cQ̄2

N

[
1

N

Q

Q̄

∑
s

Q̄s
q̄s

](
q

q̄s
− 1

N

Q

Q̄

∑
s

Q̄s
q̄s

)

=
1

N

cQ2

2
+
cQ̄2

N

[
Q

Q̄

1

N

∑
s

Ns

](
q

q̄s
− Q

Q̄

1

N

∑
s

Ns

)

=
1

N

cQ2

2
+
cQ̄2

N

[
Q

Q̄

](
q

q̄s
− Q

Q̄

)
=

1

N

cQ2

2
+ cQ

Q̄

N

(
q

q̄s
− Q

Q̄

)
.

SEE

Recall that:

xSEE (q, s) =
C(Nq̄0)

N
+

ˆ q

z=0

1

N −N (z)
C ′
(
Q̃ (z)

) dQ̃ (z)

dq
dz

+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz,

where

Q̃ (q) =

ˆ q

0

zn (z) dz + (N −N (q)) q

=

ˆ ∞
0

inf{z, q}n (z) dz.

We have

dQ̃

dq
= qn (q) + (N −N (q))− qn (q)

= N −N (q) ,

so that
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ˆ q

z=0

1

N −N (z)
C ′
(
Q̃ (z)

) dQ̃ (z)

dq
dz =

ˆ q

z=0

C ′
(
Q̃ (z)

)
dz

=

ˆ q

z=0

cQ̃ (z) dz

= c

ˆ q

z=0

(ˆ ∞
y=0

inf {y, z}n (y) dy

)
dz

= c

ˆ ∞
y=0

ˆ q

z=0

inf{y, z}dzn (y) dy

= c

ˆ ∞
y=0

(ˆ y

z=0

zdz +

ˆ q

z=y

ydz

)
n (y) dy

= c

ˆ ∞
y=0

(
y2

2
+ y (q − y)

)
n (y) dy

= c

ˆ ∞
y=0

(
yq − y2

2

)
n (y) dy

= cq

ˆ ∞
y=0

yn (y) dy − c
ˆ ∞
y=0

y2

2
n (y) dy

= cQq − c
ˆ ∞
y=0

y2

2
n (y) dy.

Hence,

xSEE (q, s) =
C(Nq̄0)

N
− c
ˆ ∞
y=0

y2

2
n (y) dy + cQq

+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz.

By budget balance

∑
s

ˆ ∞

0

xSEE (z, s)ns(z)dz =
cQ2

2

so that

N

[
C(Nq̄0)

N
− c
ˆ ∞
y=0

y2

2
n (y) dy

]
+ cQ2 =

cQ2

2
;

hence,
C(Nq̄0)

N
− c
ˆ ∞
y=0

y2

2
n (y) dy = − 1

N

cQ2

2
.
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Therefore, the cost component of xSEE writes

C(Nq̄0)

N
− c
ˆ ∞
y=0

y2

2
n (y) dy + cQq = − 1

N

cQ2

2
+ cQq

= cQ

(
q − Q

2N

)
.

To sum up,

xSEE (q, s) = cQ

(
q − Q

2N

)
+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz.

C.2 Increasing Returns to Scale: Affine Costs

From the discrete to the distributional setting

Recall the expression for xDSCE0 :

xDSCE0
i (q, q̄) =

1

n
C
(
Q̌n
)
−
n−1∑
k=i

1

k

[
C
(
Q̌k+1

)
− C

(
Q̌k
)]

for all i ∈ N ,

where, for all k ∈ N ,

Q̌k =

k∑
i=1

gi (rk) +

n∑
i=k+1

qi.

where the set N is ordered so as to have r1 ≤ r2 ≤ ... ≤ rn.
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In the distributional setting,

Q̌ (ρ) =
∑
s∈S

[ˆ ρ

z=0

gs (ρ)nrs (z) dz +

ˆ ∞
z=ρ

gs (z)nrs (z) dz

]
=
∑
s∈S

[
Nr
s (ρ) gs (ρ) +

ˆ ∞
z=ρ

gs (z)nrs (z) dz

]
=
∑
s∈S

Nr
s (ρ) gs (ρ) +

ˆ ∞
z=ρ

∑
s∈S

gs (z)nrs (z) dz

=

ˆ ∞
z=0

∑
s∈S

sup {gs (ρ) , gs (z)}nrs (z) dz

=

ˆ ∞
z=0

∑
s∈S

gs (sup {ρ, z})nrs (z) dz.

Define sup ~ρ the largest responsibility level in the population and the associated

virtual consumption level that brings all users to that same level of responsibil-

ity:

Q̌sup ≡ Q̌ (sup ~ρ)

=

ˆ ∞
z=0

∑
s∈S

gs (sup {sup ~ρ, z})nrs (z) dz

=
∑
s∈S

gs (sup ~ρ)

ˆ ∞
z=0

nrs (z) dz

=
∑
s∈S

Nsgs (sup ~ρ) .

Likewise, the expression of xDSCE0 in the distributional setting becomes:

xDSCE0 (q, q̄) =
1

N
C
(
Q̌sup

)
−
ˆ sup ~ρ

z=ρ

1

Nr (z)
C ′
(
Q̌ (z)

) dQ̌ (z)

dz
dz.

Moreover,

dQ̌ (z)

dz
=

d

dz

[∑
s∈S

Nr
s (z) gs (z) +

ˆ ∞
y=z

∑
s∈S

gs (y)nrs (y) dy

]
=

∑
s∈S

nrs (z) gs (z) +
∑
s∈S

Nr
s (z) g′s (z)−

∑
s∈S

gs (z)nrs (z)

=
∑
s∈S

Nr
s (z) g′s (z) . (6)
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DSCE0 with absolute responsibility

In the case of absolute responsibility, ρ = q − q̄s so that gs (ρ) = ρ+ q̄s. Hence,

g′s (ρ) = 1 for all s ∈ S. It follows that:

Q̌ (ρ) =

ˆ ∞
z=0

∑
s∈S

gs (sup {ρ, z})nrs (z) dz

=

ˆ ∞
z=0

∑
s∈S

[sup {ρ, z}+ q̄s]n
r
s (z) dz

=

ˆ ∞
z=0

sup {ρ, z}nr (z) dz + Q̄.

Moreover, Expression (6) becomes:

dQ̌ (ρ)

dρ
=

∑
s∈S

Nr
s (ρ) = Nr (ρ) ,

and,

Q̌sup =
∑
s∈S

Nsgs (sup ~ρ)

=
∑
s∈S

Ns [q̄s + sup ~ρ]

= Q̄+N sup ~ρ.

Hence,

xDSCE0 (q, s) =
1

N
C
(
Q̌sup

)
−
ˆ sup ~ρ

z=ρ

C ′
(
Q̌ (z)

)
dz.

Suppose that C (Q) = F + cQ with F, c > 0. We obtain:

xDSCE0 (q, s) =
1

N

(
F + cQ̌sup

)
− c [sup ~ρ− ρ]

=
F + cQ̄

N
+ c sup ~ρ− c sup ~ρ+ cρ

=
F + cQ̄

N
+ cρ

=
F + cQ̄

N
+ c (q − q̄s)
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DSCE0 with relative responsibility

When responsibility is measured by relative responsibility, ρ = (q − q̄s) /q̄s so

that gs (ρ) = q̄s (1 + ρ). Hence, g′s (ρ) = q̄s for any s ∈ S. It follows that:

Q̌ (ρ) =

ˆ ∞
z=0

∑
s∈S

gs (sup {ρ, z})nrs (z) dz

=

ˆ ∞
z=0

∑
s∈S

[1 + sup {ρ, z}] q̄snrs (z) dz

= Q̄+

ˆ ∞
z=0

sup {ρ, z}
∑
s∈S

q̄sn
r
s (z) dz.

Moreover, Expression (6) becomes:

dQ̌ (ρ)

dρ
=

∑
s∈S

q̄sN
r
s (ρ) ,

and,

Q̌sup =
∑
s∈S

Nsgs (sup ~ρ)

=
∑
s∈S

Nsq̄s [1 + sup ~ρ]

= [1 + sup ~ρ] Q̄.

Therefore, taking C (Q) = F + cQ yields:

xDSCE0 (q, q̄) =
1

N
C
(
Q̌sup

)
−
ˆ sup ~ρ

z=ρ

1

Nr (z)
C ′
(
Q̌ (z)

) dQ̌ (z)

dz
dz

=
1

N

(
F + cQ̌sup

)
− c
ˆ sup ~ρ

z=ρ

1

Nr (z)

dQ̌ (z)

dz
dz

=
F + cQ̄

N
+

1

N
cQ̄ sup ~ρ− c

ˆ sup ~ρ

z=ρ

1

Nr (z)

∑
s∈S

q̄sN
r
s (z) dz

Assuming that responsibility is evenly spread across types, the distribution of

responsibility is independent of needs:

Nr
s (ρ) = α (ρ)Ns,
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for some increasing function α : R+ → [0, 1] which we take to be differentiable.

This yields: ∑
s∈S

q̄sN
r
s (ρ) =

∑
s∈S

q̄sα (ρ)Ns = α (ρ) Q̄,

and,

Nr (z) =
∑
s∈S

Nr
s (z) = α (ρ)

∑
s∈S

Ns = α (ρ)N.

Finally, it follows that:

xDSCE0 (q, s) =
F + cQ̄

N
+ c

Q̄

N
sup ~ρ− c

ˆ sup ~ρ

z=ρ

1

α (ρ)N
α (ρ) Q̄dz

=
F + cQ̄

N
+ c

Q̄

N
sup ~ρ− c Q̄

N
(sup ~ρ− ρ)

=
F + cQ̄

N
+ c

Q̄

N
ρ

=
F + cQ̄

N
+ c

Q̄

N

q − q̄s
q̄s

=
F

N
+ c

1

q̄s/
(
Q̄/N

)q.
DSEE

xi (q, q̄) = xi (q, q̄n0 ) =
1

n
C
(
Q̆n
)
−
n−1∑
k=i

1

k

[
C
(
Q̆k+1

)
− C

(
Q̆k
)]

+ [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

Alternatively,

xi (q, q̄) =
C
(
Q̆i
)

i
−

n−1∑
k=i+1

C
(
Q̆k
)

k (k − 1)

+ [u (qi, q̄i)− u (qi, q̄0)]− 1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

where Q̆k = kqk +
∑n
l=k+1 ql for all k = 1, ..., n.

Let
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Q̆ (q) = N (q) q +

ˆ ∞
z=q

zn (z) dz

=

ˆ ∞
z=0

sup{q, z}n (z) dz

Notice that

dQ̆ (q)

dq
= N (q)

and define Q̆sup ≡ Q̆ (sup q)

Q̆sup = N sup q

Therefore,

xDSEE (q, s) =
1

N
C
(
Q̆sup

)
−
ˆ ∞
z=q

1

N (z)
C ′
(
Q̆ (z)

) dQ̆ (z)

dz
dz

+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz

=
1

N
C
(
Q̆sup

)
−
ˆ supq

z=q

C ′
(
Q̆ (z)

)
dz

+ [u (q, q̄s)− u (q, q̄0)]− 1

N

∑
t∈S

ˆ ∞
z=0

[u (z, q̄t)− u (z, q̄0)]nt (z) dz

With C (Q) = F + cQ, the cost-sharing component becomes:

1

N
C
(
Q̆sup

)
−
ˆ supq

z=q

C ′
(
Q̆ (z)

)
dz =

F

N
+ c sup q− c

ˆ supq

z=q

dz

=
F

N
+ cq.

t
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