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Abstract

While a broad theoretical literature examines the optimal timing of unemploy-
ment insurance benefits, little is known about the empirical importance of underlying
mechanisms like duration dependence and dynamic selection. Using administrative
unemployment records from Germany, we estimate a structural job search model with
savings to empirically disentangle various forms of duration dependence and dynamic
selection. Duration dependence and dynamic selection are identified separately using
multiple unemployment spells of individuals. This allows us to assess their contribu-
tion to an increasing or decreasing profile of benefits over time. We also analyze the
local consumption smoothing gains and moral hazard costs to characterize the impact
of duration dependence and dynamic selection on the optimal insurance problem. Our
results show that they push towards increasing schedules, primarily by lowering the
moral hazard costs of providing benefits later in the spell.
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1 Introduction
The optimal design of unemployment insurance (UI) programs involves balancing gains

from consumption smoothing and costs from distorted search incentives. While the empirical
literature in public finance has mostly focused on constant benefits over the unemployment
spell (e.g. Chetty (2008)), the theoretical literature has shown that this fundamental trade-
off can lead to increasing or decreasing UI schedules (Hopenhayn and Nicolini (1997); Shimer
and Werning (2008)). Moral hazard pushes towards declining schedules, because increasing
benefits later in the spell will reduce search incentives in all previous periods. An increasing
schedule may be desirable from a consumption smoothing perspective, as individuals deplete
their assets the longer they are unemployed. Dynamic selection and non-stationary forces
may further push towards increasing or declining benefit levels over time, as the environment
changes over time or mostly individuals who would profit from higher insurance have a long
duration of unemployment (Shimer and Werning (2006)). While the optimal timing of UI
thus becomes an empirical question, there is almost no evidence on which of the effects
dominates in practice.

In this paper, we try to fill this gap by connecting the theoretical considerations to the
data. We develop a structural job search model with various forms of duration dependence
and dynamic selection, i.e. heterogeneity,1 which can be used to analyze the effects of these
forces on optimal UI schedules. The model is estimated using administrative unemployment
records from Germany. We focus on two types of duration dependence which have received
much attention in the recent literature. Schmieder, von Wachter, and Bender (2015) show
that there is a causal effect of unemployment duration on subsequent wages, which we in-
clude as skill decay into our model. In addition, field experiments suggest that a higher
unemployment duration reduces the job finding probability (Kroft, Lange, and Notowidigdo
(2013); Eriksson and Rooth (2014)), which we refer to as search decay. Search decay might
be due to individuals becoming increasingly frustrated over the spell or exhausted job op-
portunities in their local labor market. Stigma can also play a role, as employers might view
unemployment duration as a signal about productivity or other characteristics. In principle,
stigma and human capital depreciation can contribute to both skill and search decay, also
depending on whether labor market frictions (like regulations or union contracts) prohibit
firms from adjusting wages.2 Our model estimates takes both effects as exogenous and is
agnostic about their source.

In addition, individuals are heterogeneous and differ in observed and unobserved charac-
teristics, which creates dynamic selection. In the spirit of Alvarez, Borovicková, and Shimer
(2015), we use a sample of individuals who experience up to two unemployment spells to be
able to separate duration dependence and dynamic selection. Intuitively, dynamic selection,
but not duration dependence, implies that the durations of the two spells are correlated. By
targeting the joint distribution of two spells in our estimation, we can empirically disentangle
the different forces.

The main aim of our approach is to provide a decomposition of optimal UI schedules into
components due to each of our forces. The structural model allows us to shut down specific

1We use the terms dynamic selection and heterogeneity interchangeably in this paper.
2Thus, one could also use the term wage decay, but we follow the terminology from the literature (see

e.g. Shimer and Werning (2006).
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channels and to focus on the mechanisms driving UI schedules. This is in contrast to Kolsrud
et al. (2015), which is the only other empirical paper analyzing dynamic optimal UI. They
use a sufficient statistics framework to evaluate a reform in Sweden that lowered UI benefits
for the long-term unemployed. While relying on less identifying assumptions, their analysis is
silent about the relevant mechanisms, which are the focus of our analysis. Interestingly, they
find that moral hazard costs are lower when benefits are increased later in the spell, implying
that a benefit increase for the long-term unemployed would have been welfare-increasing.
Our results support these findings and show how consumption smoothing gains and moral
hazard costs are influenced by various channels, leading to a better understanding of why
the optimal UI schedule might well be upward-sloping.

The theoretical literature on dynamic optimal UI goes back to Shavell and Weiss (1979),
who show that the optimal schedule is decreasing if agents cannot save or borrow, as in-
creasing schedules would lead to moral hazard costs without helping to smooth consumption.
When they allow for savings, the optimal schedule can be decreasing or increasing, depend-
ing on the structural parameters of the model. Hopenhayn and Nicolini (1997) introduce a
wage tax and find declining optimal schedules. Shimer and Werning (2008) analyze a McCall
search model with reservation wage and find that the optimal path is constant or almost
constant if agents do not face any liquidity constraints. Few papers characterize the impact
of duration dependence and selection. Shimer and Werning (2006) provide some simulation
which indicate that these forces may overturn previous results and influence the optimal
schedule in different directions. Pavoni (2009) focuses on human capital depreciation and
shows that it gives rise to a minimum level of insurance. Our paper adds to this literature
by connecting different forms of duration dependence and heterogeneity with the first-order
conditions of the optimal insurance problem and showing how they influence consumption
smoothing gains and moral hazard costs of unemployment insurance.

Separating duration dependence and heterogeneity has a long tradition in labor eco-
nomics. While one could use a single spell per individual combined with parametric as-
sumptions (Heckman and Singer (1984)), the literature has moved towards using multiple
spells to arrive at more robust estimates. Most recently, Alvarez, Borovicková, and Shimer
(2015) show that duration dependence and heterogeneity are non-parametrically identified
in a sample consisting of at least two unemployment spells per individual. They allow for
arbitrary time-invariant heterogeneity and find that it plays a very important role for ex-
plaining hazard rates. However, it is hard to connect their results to UI policy, because their
model assumes risk-neutrality so that there is no role for UI. In addition, different forms of
duration dependence and heterogeneity have different implications for policy (Shimer and
Werning (2006)). Our paper adds to this literature by providing a decomposition tailored
specifically towards optimal UI and showing how each of the margins affects optimal policy.

The rest of this paper is organized as follows. Section 2 provides an outline of our
model and characterizes optimal UI schedules. In section 3, we give an overview of the
relevant institutional background in Germany and introduce our sample from administrative
unemployment records. Section 4 shows reduced-form results for our sample. Section 5
discusses the structural estimation of the model. Section 6 shows our decomposition of
optimal UI and the corresponding moral hazard and consumptions smoothing terms. Section
7 concludes.
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2 Theory

2.1 Search Model
We consider a dynamic model of unemployment.3 Agents are infinitely-lived and can

be either employed or unemployed. The government provides UI benefits that depend on
the duration of the spell. Agents with duration d = 0, ..., T get bd and an exogenous level
of social assistance benefits bUA if their spell is longer than T. Benefits are financed by a
constant proportional wage tax τ . Individuals differ by observable characteristics Xi and
their initial asset level in the first period (kj0). In addition, we allow for J unobserved types
of agents (Heckman and Singer (1984)). In practice, we discretize Xi into cells and I refers
to the total number of types, based on both observed and unobserved heterogeneity.

If unemployed, an individual chooses her search effort s ≥ 0. She faces search costs ψ(s),
which are increasing and concave in effort (ψ(0) = 0, ψ′(s) > 0, ψ′′(s) < 0). As margins of
true duration dependence, we include search decay and skill decay. Search decay refers to a
negative relationship between unemployment duration and the arrival rate, which is denoted
as p(s, d, j) and also depends on effort and the type of the agent. Skill decay affects the
re-employment wage w(Xi, d), which decreases the longer the individual is unemployed and
also depends on the type. To simplify the solution of the model, we assume that there is
no (true) duration dependence for durations greater than E (which is potentially large and
always greater than T), i.e. p(s, d, k) = p(s, E, k) and w(Xi, d) = w(Xi, E) for d > E.

Once a job arrives, individuals accept the offer and work at wage w(Xi, d). Thus, there
is no random component to the wage offer, which allows us to abstract from reservation
wage choices.4 Jobs are exogenously destroyed with probability δ, so that individuals can
experience multiple spells. Savings decision, for both employed and unemployed agents, are
subject to a standard inter-temporal budget constraint. Asset levels have to be positive, so
that agents cannot borrow, and smaller than k̄, which will be chosen large enough not to be
binding. The resulting set of feasible asset choices, given income y and current assets k, is:

Γ(y, k) = {k′|0 ≤ k′ ≤ k̄, k′ ≤ y +Rk}

Preferences are described by a time-separable utility function over consumption in all periods.
The instantaneous utility function is strictly concave and given by u(ct). Agents discount
the future at rate β and face an interest rate of R. The problem of an unemployed individual
is described by the value function V u:

V u(d, k, j) = max
s≥0,k′∈Γ

{
u
(
bd +Rk − k′

)
− ψ(s) + βp(s, d, j)V e(d+ 1, k′, j)

+ β(1− p(s, d, j))V u(d+ 1, k′, j)
}

3Related search models are discussed in e.g. Lentz (2009) and DellaVigna et al. (2015).
4This is in line with the recent literature focusing on search effort rather than on reservation wages (e.g.

Card, Chetty, and Weber (2007), Krueger and Mueller (2014), DellaVigna et al. (2015)). Lichter (2015)
provides evidence that search effort, but not the reservation wage, reacts to extensions in potential benefit
duration. The assumption can also be justified by a small variance of wage offers conditional on all observed
and unobserved time-invariant individual characteristics.
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The value of employment, V e, is given by:

V e(d, k, j) = max
k′∈Γ

{
u
(
(1− τ)w(d) +Rk − k′

)
+ β(1− δ)V e(d, k′, j) + βδV u(0, k′, j)

}
Note that V e includes V u(0, ·), as employed individuals losing their job start with duration
0. The conditional for the optimal effort follows directly from the value function for unem-
ployment and equates the costs from an additional search unit and the gains from a higher
arrival rate. It is given by the following equation:

ψ′(s) = βp′(s, d, j)
[
V e(d+ 1, k′, j)− V u(d+ 1, k′, j)

]
Similarly, we can state the Euler inequality for unemployed individuals:

u′(c) ≥ β
∂(1− p(s, d, j))V u(d+ 1, k′, j)

∂k′
+ β

∂p(s, d, j)V u(0, k′)
∂k′

Note that evaluating the derivatives requires using the product rule, since next period’s
asset levels influences the effort decision. The Euler inquality for employed individuals can
be written as follows:

u′(c) ≥ β(1− δ)∂V
e(d, k′)
∂k′

+ βδ
∂V u(0, k′)

∂k′

When agents hit the liquidity constraint, the inequality is strict. These cases create an
additional motive for UI, which may help individuals to smooth consumption.

The numerical solution of the model, which we describe in appendix A, is based on
these first-order conditions. We denote the hazard rate of individual i at duration d as
hi,d = p(s∗, d, i), where s∗ is the optimal effort choice. The survival function corresponds to
the probability of still being unemployed after d periods, i.e. Si,d = ∏d

t=0(1− hi,t).5 hd and
Sd (without individual index) refer to the population average, i.e. the expectation over all
types and observable cells. Figure 1 shows model-implied hazard rates for typical parameter
values. In panel (a), there is a flat schedule until period T and no duration dependence or
heterogeneity. Once individuals receive UA benefits in period T +1, search effort and hazard
rate are constant. In previous periods, the hazard rate increases as individuals come closer
to the UA threshold. In panel (b), the hazard rate decreases over time, which can be the
result of both duration dependence and heterogeneity.

2.2 Optimal Unemployment Insurance
The government faces an insurance problem and wants to provide UI while maintain-

ing a balanced budget. The rationale for providing UI is that it allows agents to smooth
consumption and provides liquidity in the presence of incomplete financial markets. At the
same time, individuals who reduce their search effort as a result of UI benefits impose a fiscal
externality on the government, which has to raise the tax rate as a result. This is essentially
a principle-agent problem with repeated moral hazard where the principle cannot condition

5Note that optimal effort choices depend on the asset levels, which is omitted in our notation.
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(a) Benchmark specification (b) Full specification

FIGURE 1: Illustration of model-implied hazard rate

Notes: In this figure we show in panel (a) the model-implied hazard from a standard benchmark job search
model, without duration dependence and heterogeneity. Panel (b) illustrates the hazard rate in the full
framework. The x-axis denotes unemployment duration and the y-axis the hazard rate out of unemployment.

on search effort or asset levels. The instruments of the planner are benefit levels b0, ..., bT
and a constant tax on wages as specified in the previous section.6

The objective of the planner is to maximize a standard utilitarian welfare function, con-
sidering the weighted sum of utilities of unemployed agents7:

max
b0,...,bT

I∑
i=1

ωiαiV
u(0, k0i, j) (1)

ωi is the welfare weight of type i (we assume ωi = 1 for all i) , αi is the type probability
and k0i is the initial asset level. Note that each index i corresponds to a combination of the
unobserved type, the wage cell and the initial savings level. Importantly, maximization of
the value function takes the behavioral response of the agent into account. Higher benefits
that decrease search effort lead to higher taxes, so that the net effect on the utility level may
be negative.

The budget constraint of the government is given by:
T∑
d=0

1
Rd
Sdbd =

T∑
d=0

1
Rd
Sdhd

τwd
R + δ − 1

The expenditure of the government consists paying UI benefits bd, which happens with
probability Sd. With probability Sdhd, the agent finds a job in period d and pays taxes until

6A different choice would be to make the tax rate dependent on unemployment duration or consider fully
history-dependent benefits and taxes. Our approach follows the empirical literature in public finance and
has the advantage that it is easier to relate our instruments to the UI policy in practice.

7One might also focus on or include the utilities of employed agents into the objective function, which
naturally leads to lower replacement rates. We follow the empirical UI literature (e.g. Chetty (2008), Kolsrud
et al. (2015)) in using the utility of unemployed agents.
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her job ends. To abstract from the UA system as much as possible, summation ends at
period T.8

It is important to note that the problem defined by (1) and the budget constraint is not
necessarily well-behaved and jointly concave in b0, ...bT . Numerical optimization may lead to
local maxima.9 As a result, we currently focus on schedules that can be parametrized with
relatively few variables. For example, we consider two-step schedules, which pay b1 and b2 in
each half of the spell, or (piece-wise) linear schedules based on a small number of nodes and a
constant slope between nodes. In these cases, the planners problem involves optimization in
few dimensions and can be solved by calculation the objective function on a grid. This allows
us to always find a global optimum and check if the objective is concave. It also makes our
setting comparable to Kolsrud et al. (2015), who focus on two-step schedules. In addition,
relatively simple schedules are appealing from a policy perspective, as a fully flexible schedule
with T steps is less likely to be implemented in practice. However, features like heterogeneity
may lead to potentially interesting non-monotonicity (e.g. Shimer and Werning (2006)), so
that it might be interesting to look at fully flexible schedules. In a future version of this
paper, we want to work out the properties of a more general optimization problem and
consider more general schedules.

2.3 Moral Hazard and Consumption Smoothing
So far, we focused on optimal UI schedules that maximize (1) subject to a budget con-

straint. To understand the mechanisms behind the optimal insurance problem, it is useful
to analyze the local consumption smoothing (CS) gains and moral hazard (MH) costs. The
idea is to consider the government’s maximization problem and, instead of searching for a
global optimum, rewrite the first-order conditions to isolate the CS and MH components,
which can be interpreted in a very intuitive way. While these sufficient statistics are often
used to make local welfare statements without identifying the primitives of the structural
model, our approach shows that they can be very useful to shed light on how the primitives
influence the optimal insurance problem.

Kolsrud et al. (2015) derive sufficient statistics formulas for the optimal timing of ben-
efits. In appendix B, we generalize these formulas, so that they correspond exactly to the
planners problem from the previous section. The main difference is that our formulas take job
destruction into account, so that we have to use simulation to take the expectation over all
possible employment histories. Intuitively, in a model with destruction, a marginal increase
in bk affects not only consumption in period k, but also consumption in future periods, and
the probability to relate to all possible histories. We are currently working on implementing
the general formulas. In the rest of this draft, we work with the sufficient statistics for a

8The way of dealing with the UA system is an important issue for writing down the budget constraint.
In practice, UA is means-tested and influenced by redistributive motives. Therefore, we do not want to
derive optimal UA levels from our model. At the moment, we exclude all expenditures for UA from the
budget constraint for the UI system. In addition, we exclude revenues from individuals who find jobs while
being in the UA system. As a final simplification, the budget constraint currently only includes revenue
and expenditures from the first spell. However, spells are similar (except for differences in savings), so that
balancing the budget from the first spell is a good approximation for the full problem.

9In the case of two-step schedules, our simulation results suggests that the objective function is globally
concave, leading to a unique maximum (see figure 7).
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model without job destruction. As the destruction rate is small in the data, these formulas
should be a good approximation to the more general case.

Suppose, for the moment, that agents live until period T̃ (our infinite horizon case is
the limit) and that there is no job destruction. In this case, the sufficient statistics can be
derived as in proposition 1 from Kolsrud et al. (2015). We also include β and R in our
formulas, which are set to one in their paper. The consumption smoothing gain can be
stated as follows:

CSd = Ed[ωu′(cu)]− E[ωu′(ce)]
E[ωu′(ce)] (2)

Ed[ωu′(cu)] =
[ I∑
i=1

ωiαiSi,d∂u(cui,t)/∂c
]

(3)

E[ωu′(ce)] =
∑I
i=1 ωiαi

∑T̃
t=0 β

t(1− Si,t)E
[
u′(cei,t)

]
wiSk∑I

i=1 ωiαi
∑T̃
t=0(1− Si,t) 1

Rt
wi

(4)

Note that as before, summation is over I types, which includes both unobserved and observed
heterogeneity. As we consider a proportional income tax, the wage also enters the expression
for the smoothing gain as a result of taking the derivative w.r.t. τ . The moral hazard costs
are given by the following expression:

MHd =
n∑
l=1

Dlbl
Dkbk

Rk

Rl
εDl,bk

CSd and MHd can be interpreted in a very intuitive way. CSd quantifies by how much
the welfare of the agent can be increased by transferring a small unit of consumption from
the employed state to the unemployed state with duration d, adjusted for the increase in the
tax which is needed to finance the transfer. MHd corresponds to the percentage in the tax
which results from behavioral responses of the agent, excluding the mechanical tax increase.

In any local maximum of the objective function, we have CSd = MHd for all d. If the
current schedule is not optimal, the relative magnitude of these terms indicates if benefits at
duration d should be increased or decreased. Using the estimated model, we can show how
these sufficient statistics are shaped by duration dependence and heterogeneity.

2.4 Duration Dependence and Dynamic Selection
Duration dependence and dynamic selection are important to consider in our model, be-

cause they have different implications for unemployment policy. In a stationary environment,
optimal UI is decreasing with unemployment duration. However, this finding is not robust
to duration dependence and dynamic selection. Based on the concepts from the previous
sections, we can discuss the theoretical impact of duration dependence and selection on the
optimal insurance problem. While there are few general results, this gives some intuition
on the mechanisms through which each of the forces operates. In any optimal schedule,
MHd = CSd holds for all durations. By discussing how changes in duration dependence or
dynamic selection affect the sufficient statistics, which effects lead to upward or downward
adjustments of the optimal schedule.
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For the case of skill decay ξ, three effects shape consumption smoothing (see equations
(2-4)). First, a larger skill decay has a mechanical effect on the wedge between expected
marginal utility of consumption in the two states. This is because a larger skill decay
decreases expected consumption on employment (holding asset levels constant) and hence
reduces the gap between the marginal utility of unemployment versus employment. This
force shifts CS downwards. On the other hand, agents re-optimize in the presence of skill
decay and change their savings behavior and consumptions choices cu and ce, which also
influences marginal utilities. In addition, the survival rates, which act as weights for the
marginal utilities, change as the agent adjusts her search behavior. In terms of search effort,
skill decay is a strong incentive to search today relative to tomorrow and therefore reduces
MH considerably. This is not to say that individuals search more in general, but that their
search decision is less reactive to UI benefits, hence the elasticity of search is smaller under
skill decay which reduces the MH cost for the principal. In addition, there is also a direct
budgetary effect, since skill decay has an impact on how much revenue the government can
raise. This is reflected in changes in Sk/B, where B is the denominator from equation 4.

Very similar effects arise under search decay. Individuals become less reactive to policy
changes and MH cost are lower under search decay. CS is only affected through re-optimizing
behavior of the agent when search decay is present. There is no mechanical wage effect on
CS under search decay, since the wage is unaffected.

Heterogeneity is conceptually different from duration dependence because it affects MH
and CS mainly through endogenous changes in the type distribution over the unemployment
spell. Namely because the CS gain is a weighted average of individual CS gains. The MH
cost are also defined via the average elasticity of the search effort with respect to benefits.
In particular, the more time passes the higher gets the weight of the bad search types in
the calculation of CS and MH. However, the within-type duration dependence shows the
same effects as described above. The only difference is that the weights between individuals
change and that MH and CS changes through compositional changes of the types.

While these considerations help to gain intuition on the optimal insurance problem, the
impact of each of the forces on the optimal UI schedule is ambiguous in theory and depends
on the relative size of various channels. In later sections, our simulation results will show
which of these effects are most important given the estimated parameter values.

3 Institutions & Data

3.1 Unemployment Insurance in Germany
In the period from 1983 until 2010 the German unemployment insurance system com-

pares relatively well to unemployment insurance schemes in other developed countries, like
the US or many European countries. However, the US system has somewhat less generous
potential benefit durations and replacement rates. In Germany, the duration of UI percipi-
ence depends on the employment history in the last three years.10 In our analysis, we will
only consider individuals that are eligible for 12 months of unemployment benefits when they

10To be more precise, four years from 1983 until June 1987, three years from July 1987 until January 2006
and thereafter only two years. See appendix C for all details.
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lose their job. The reason for this choice is the fact that most individuals are eligible for 12
months of unemployment benefits. Shorter durations are only applied to individuals with
unstable working histories. Hence, in most cases individuals worked for most of the time
(usually at least 24 months) during the last three years. To account for changing rules and
laws over the sample period that determine UI eligibility, we use an eligibility simulator and
drop all individuals that are not eligible for 12 months of UI.11 With this restrictions, we
can create a consistent sample of unemployment spells that subject to the same institutional
regulations.
Individuals that become unemployed are required to register at their local employment
agency as unemployed in order to receive any benefits. Take-up of UI is relatively high
in Germany and replacement rates are 60% of average earnings in the 12 months before the
unemployment spell for singles and 68% for married unemployed. In addition, the employ-
ment agencies in Germany assist job seekers in their job search. For example, the employment
agency helps with applications and provides information about vacancies. After a worker
runs out of UI benefits and is still unemployed, then he moves into unemployment assistance,
i.e. social welfare. Unemployment assistance (UA) is means-tested and was subject to large
reforms, especially in the early 2000s (Hartz reforms). We ignore UA as much as possible
in our analysis and assume in our model that individuals receive social welfare benefits after
UI has expired. This allows us to capture the feature of unemployment benefit exhaustion,
while avoiding to model the details of UA.

3.2 Data
In order to estimate the model and decompose moral hazard and consumption smoothing

quantitatively, we use administrative unemployment records from Germany. The data-set is
provided by the federal employment agency in Germany. The data come from the integrated
employment histories (IEB) that the public social security providers collect. The information
in the IEB provides day-to-day information and consists of all employment records within
the social security system.12 Employers are required to report any employment contracts to
the social security providers. Unemployment spells are directly reported by the employment
agency. We have access to a 2% random sample of all registered employment (and unem-
ployment) histories from 1975 until 2010. Individuals can be followed via a unique identifier
over the lifetime. The key variables included in the data-set are day-to-day information
on employment and unemployment spells, daily wages during employment, unemployment
benefits and several demographic variables, such as age, gender and education. In addition,
we can match the individual employment records to firms with the establishment history
panel (BHP) provided by the employment agency. This provides occupational information,
size and age of the establishment, median wages within the firm and whether unemployed
individuals return to their previous employer.

From this data we create a sample of unemployment spells of individuals that start in the
11The simulator includes age cutoffs (older individuals receive benefits for longer), employment history

regulations and drops individuals that might be subject to carry-forward rules that come into play for
individuals with multiple unemployment spells.

12This accounts for roughly 80% of all employment contracts. The remainder consists of students, self-
employed and public employees (Schmieder, von Wachter, and Bender (2012)).
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interval from the beginning of 1983 until the end of 2007, while we allow for multiple unem-
ployment spells of individuals. However, we only consider second and higher unemployment
spells of individuals that are eligible for another 12 months of unemployment insurance. Due
to complex carry-forward rules we restrict the second spell to lie at least four years after the
first spell, because after four years no unused benefits from prior spells can be counted to-
wards the second spell. This leaves us with 201,096 first unemployment spells, where 18,257
individuals experience a second unemployment spell.13 This restrictions allow us to analyze
individuals with two unemployment spells that face the same replacement rates and the same
potential benefit duration, which is important for a precise estimation of heterogeneity and
search decay.14

We define an unemployment spell as the transition from employment to registered un-
employment within 30 days (and drop all individuals that register more than 30 days after
their prior job has ended). We also drop individuals with ambiguous entries, e.g. individuals
who receive UI and are currently employed; and we exclude individuals that receive social
welfare benefits on top of unemployment benefits. Further, only individuals between 20 and
55 are considered to avoid old-age regulations and early retirement schemes. Unemployment
duration is counted as the time between the start of receiving UI benefits and the start of
the next registered employment spell as in Schmieder, von Wachter, and Bender (2012). We
also set unemployment spells to 36 months for individuals that are unemployed for longer.
This avoids giving large weights to individuals that never return to work or leave the labor
market.

4 Reduced-form Results

4.1 Descriptive Statistics
In the preceding section we have created a sample of individuals with multiple unem-

ployment spells. Table 1 shows descriptive characteristics for our final sample. The left part
shows different descriptive statistics for all individuals in our sample at the time of their
first unemployment spell. The right part of table 1 shows descriptive statistics for individ-
uals that experience two spells only at the time of their first spell. Looking specifically at
individuals with two spells is important to detect differences between individuals with one
or two spells. A comparison of individuals observables at the time of the first spell versus
observables at the time of the second spell is only partly informative, due to mechanical
changes in observables. In particular, age is higher at the second spell, individuals are more
likely to be married or having children, and also their pre-unemployment wage was higher,
due to higher tenure. In the appendix, we show the descriptive statistics for individuals at
the time of the first spell compared to the observables at the time of the second spell.

In our baseline sample, we have around 45% female unemployed and a mean age of 30
13There are around 630 individuals that experience a third spell according to our spell restrictions, although

we ignore third and higher spells of these individuals.
14An individual that experiences two unemployment spells, but different institutional environments during

the two spells can not be used for estimation, because the different behavior in the two spells might be due
to the institutional setting.
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TABLE 1: Descriptive Statistics

At least one spell Two spells
Variable Mean Std.Dev. Mean Std.Dev.

Pre-unemployment wage e 845.45 (488.24) 867.38 (472.41)
Mean duration (weeks) 56.25 (57.09) 53.82 (55.20)
Age 30.15 (8.47) 31.77 (8.45)
Female 0.45 (0.50) 0.42 (0.49)
Married 0.40 (0.49) 0.38 (0.49)
Children 0.35 (0.48) 0.37 (0.48)
Education 1.79 (0.52) 1.85 (0.51)
Observations 201,096 18,257

Notes: Table 1 shows descriptive statistics of our final sample of unemployment spells. Column 1 shows
mean levels of several observable variables for individuals that experience at least one unemployment
spell. The terms in brackets denote the respective standard deviations. In the right two columns the
table shows observable characteristics for individuals who experience two unemployment spells at the
time of the first unemployment spell.

years at the time when the first unemployment spell starts. 40% of our sample are married
and 35% of individuals have at least one children. Education is defined as a categorical
variable where 1 denotes some school education, 2 denotes some form of apprenticeship and
3 gets allocated to individuals with a university degree. Most individuals in our sample
have some form of apprenticeship (N = 139, 194) or only some school education (N =
50, 750) and relatively few a university degree (N = 11, 486) compared to the population
averages. This is not surprising, though, because highly educated individuals face a much
lower unemployment risk than lower educated individuals. Comparing the different rows of
table 1 is very reassuring. Column 2 conditions on having two unemployment spells, but no
observable characteristic shows aq relevant difference for individuals with two spells. This is
important, because to separately identify dynamic selection and duration dependence we rely
on individuals that experience two unemployment spells. If they would have very different
observable characteristics, it would be hard to justify that individuals that experience two
unemployment spells are similar to individuals with just one unemployment spell. In the
best case, someone who is unemployed twice is just someone who had bad luck losing his job
twice, but is similar in any other respect to someone who lost his job just once.

4.2 Reduced-form Hazards
Our model, that we describe in section 2, generates predictions about the behavior of

agents that can be compared to the data. The main outcome of our job search model is the
hazard rate out of unemployment. Recall the definition of the hazard rate: hd = P (d∗ =
d|d∗ ≥ d), where d∗ is the unemployment duration of an agent. Hence, the hazard is defined
as the probability of exiting unemployment at duration d conditional on surviving at least
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FIGURE 2: Reduced-form hazard rate

Notes: Figure 2 plots the reduced-form hazard rate of all unemployment spells in our sample; in particular
it pools all first and second spells. The x-axis denotes bi-weeks, i.e. 14-day intervals. The hazard rate is the
probability of exiting unemployment at bi-week d, conditional on surviving until bi-week d and is shown on
the y-axis.

FIGURE 3: Reduced-form hazard rates by unemplyoment spell

Notes: Figure 3 plots hazard rates of our final sample separated by the number of the unemployment
spell. The x-axis shows unemployment duration and the y-axis the hazard rate out of unemployment. The
blue curve draws the hazard function for the first unemployment spell and the red curve for the second
unemployment spell, respectively.
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until d. From our sample of unemployed individuals we can estimate the population hazard
function hd non-parametrically in the following way:

ĥd = Ê[d∗i = d|d∗i ≥ d] (5)

This can easily be implemented by regressing a dummy of unemployment exit in period d on
a constant in the sample of unemployed that survived until d. The estimator of the constant
is then equivalent to the conditional expectation function in (2). This needs to be done for
every period of unemployment duration d to arrive at an estimate of the hazard function
hd. Note that this estimated hazard rate function is the average hazard in the sample. For
now, we ignore observables, however, in a later stage we will estimate the hazard function
for observable cells , which characterizes a hazard function for every cell in a non-parametric
manner.15

We define 14-day intervals for exiting unemployment, which we denote bi-weeks, and
plot in figure 2 the reduced-form hazard for the sample of unemployment spells. We pool
together first and second spells and the x-axis denotes unemployment duration, while the
y-axis denotes the hazard rate out of unemployment ĥd. We show the hazard for the first
three years (78 bi-weeks) and censor all spells that last longer than three years. The hazard
rate looks as in most other empirical studies (e.g. DellaVigna et al. (2015) for Hungary,
Alvarez, Borovicková, and Shimer (2015) for Austria): It is decreasing with the length of
the unemployment duration, which means that the probability of exiting unemployment
decreases with time. At 26 bi-weeks, i.e. after one year, we see a little spike that is due
to the UI benefit exhaustion. Some individuals decide to leave the labor market or do not
register for UA benefits because they are not eligible or not willing to be subject to means-
testing. This effect seems to be small for Germany. One can also see in the graph that
every second bi-week has a higher hazard than the other bi-weeks. This is because jobs in
Germany usually start and end at the beginning of each month, hence the probability that
UI ends at the end of a month is higher than during the month.16

In the above figure, where we showed the hazard rate out of unemployment we pooled
all UI spells in our sample. One might wonder if individuals that experience their second
UI spell differ in their search outcomes, i.e. in the average hazard. In figure 3 we separate
UI spells and draw the reduced-form hazard function for first (blue line) and second spells
(red line). Both lines are nearly indistinguishable and show that on average individuals
do not differ in search outcomes whether they are experiencing their first or second spell.
Our non-stationary search model predicts exactly this: The hazard function of an individual
is independent of the number of the unemployment spell.17 In addition, figure A2 in the
appendix shows the hazard rate for individuals that experience two spells and ignores all
individuals with a single spell. There, both hazard curves are also close to indistinguishable.

15As DellaVigna et al. (2015) point out, the estimated hazard is not a consistent estimator on the individual
level, but an estimator of the average hazard function in the population. However, this is actually sufficient
for our purposes.

16Roughly 50% of all jobs begin at the first day of a given month and 35% of jobs end at the last day of
a month.

17Abstracting from changes in the asset positions of individuals in their first UI spell compared to the
second spell. However, this effect is quantitatively very small.

14



FIGURE 4: Correlation between hazard rates between UI spells

Notes: Figure 4 plots the reduced-form hazard rates of individuals in the second spell conditional on their
unemployment duration in the first spell. The blue line (1-5) plots the reduced-form hazard of individuals
who were unemployed 1-5 bi-weeks in their first unemployment spell. The other hazard rates are defined in
the same way. All hazard curves are smoothed by using a non-parametric kernel density estimator with a
bandwidth of 3.18.

To compare our empirical hazard with the theoretical predictions of a stationary search
model is very insightful. The stationary search model with benefit exhaustion predicts that
the hazard rate is increasing up until benefit exhaustion, due to the forward-looking behavior
of agents and stays flat from there on. This is actually opposite to what the data tells us.
Hence, stationary search models have a hard time explaining even the slope of the hazard
curve, not talking about the shape and curvature. The goal of our non-stationary model is
to explain theoretically and match empirically the reduced-form hazard pattern that we see
in the data and to disentangle whether dynamic selection or duration dependence generates
the falling hazard rate over time. Recall that duration dependence and dynamic selection
create both a falling pattern of the hazard, and it is hard disentangle the two forces from
the uni-variate hazard curve. However, the occurrence of multiple unemployment spells of
individuals allows us to disentangle duration dependence and heterogeneity. As we describe
in detail in section 5.2, the correlation between unemployment lengths in the two spells of
an individual, is suggestive of the presence of heterogeneity. If unemployment durations are
correlated at the individual level, then this hints towards dynamic selection, for example
through unobserved heterogeneity in search costs as we model it. In other words, if there
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is a set of individuals that always needs a long time to find a job in any spell, and a set
of individuals that always find jobs quickly, then the length of the first unemployment spell
is predictive of the length of the second unemployment spell. The larger this correlation,
the more likely it is that heterogeneity is important. Heterogeneity has also implications
for the hazard rate in the second spell, conditional on the hazard rate in the first spell.
Absent any heterogeneity, the hazard rate of individuals in the second spell conditional on
unemployment duration in the first spell is the same. Under heterogeneity, the conditional
hazard rate differs with respect to the unemployment duration in the first spell. Figure 4
plots this relationship. Every line in this figure draws the hazard rate of individuals in the
second spell, conditional on the unemployment duration in their first spell. The figure always
pools together 5 bi-weeks to have sufficiently many observations in each group and to make
the graph clearer. Looking at the first line (hazard rate of individuals who were one to five
bi-weeks unemployed in the first spell) compared to the second line shows that the hazard
rate is higher for individuals that had a shorter unemployment duration in their first spell.
This means that individuals that left UI quickly in the first spell, are on average also more
likely to leave UI in their second spell faster, which hints towards dynamic selection and the
presence of different search types. Duration dependence cannot explain this pattern. If only
duration dependence is present than all lines in figure 4 would need to lie on top of each
other. By looking at the correlation coefficient of unemployment duration in the second spell
versus unemployment duration in the first spell, a similar conclusion arises. The coefficient is
positive 0.102 and hints towards heterogeneity. Although, this reduced-form evidence cannot
tell us anything about the relative magnitudes of duration dependence and dynamic selection
it is nonetheless suggestive evidence that heterogeneity matters. The structural model will
then pin down the importance of each margin and its implications on optimal UI.

4.3 Reduced-form Wages
Most models in the search and optimal UI literature assume a constant re-employment

wage independent of unemployment duration.18 The assumption how the re-employment
wage changes over the unemployment duration has important implications for the optimal
timing of UI, though. A decreasing re-employment wage is an incentive for individuals to
search more in early periods compared to distant periods. As we will show later, in the
presence of skill decay the UI system wil be more generous than in the case without skill
decay. This is because the principal must not incentivize the agent to search hard today,
because optimizing behavior of the agent already dictates to search more today relative to
tomorrow. Our model captures a change in the re-employment wage over unemployment du-
ration by the inclusion of skill decay. Instead of skill decay, also selection could explain why
re-employment wages are non-constant. In particular, if individuals with a lower productiv-
ity, hence lower wages, select into longer unemployment spells then the change in observed
re-employment wages might just be due to differences in wage opportunities of individuals.
In figure A1 in the appendix we show how observables like mean age, education and gender
change as a function of unemployment duration. This can be informative about the degree

18See Chetty (2008); DellaVigna et al. (2015); Hopenhayn and Nicolini (1997); Lentz (2009); Kolsrud et al.
(2015) and many others.
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FIGURE 5: Reduced-form re-employment wages

Notes: This figure plots re-employment wages of individuals exiting unemployment at duration d. The x-axis
plots unemployment duration in bi-weeks (14-day intervals) and the y-axis mean re-employment wages of
those individuals.

FIGURE 6: Reduced-form re-employment wages by unemployment spell

Notes: Figure 6 shows mean re-employment wages as a function of unemployment duration where the
unemployment spells are separated into first and second spells. The blue curve shows mean re-employment
wages for individuals in their first spell and the red curve for individuals in their second spell, respectively.
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of selection on observables over the unemployment spell, because age, education and gender
are important predictors of wages. We see indeed that especially women tend to be longer
unemployed then men. Education seems to be relatively stable. This is not surprising be-
cause the sample is relatively homogenous in terms of education. However, for now we rule
out the possiblity of heterogenous wages but plan to extend our model and estimation to
include wage heterogeneity, because it could play an important role.19

Figure 5 shows that the re-employment wage is far from constant over unemployment
duration, either because of skill decay or selection on wages. In this figure we plot the mean
re-employment wage of unemployed leaving unemployment at duration d. Formally, the
y-axis plots the non-parametric conditional mean wage:

ŵd = Ê[wi|d∗i = d] (6)

The estimator can easily be recovered by a regression of the re-employment wage on a con-
stant conditional on unemployment duration (duration-cell averages). The re-employment
wages of individuals with short UI durations are between 850 euros and 900 euros per bi-
week. After 10 bi-weeks the re-employment wages starts to deteriorate and is only 750 euros
after one year and continues to decline to around 650 euros after nearly three years of unem-
ployment. Hence, an individual that is unemployed for one year has on average a wage that
is only around 80% of the wage of an individual that is unemployed for a short period. In
our structural model, we will try to match this pattern by incorporating proportional skill
decay that captures changes in re-employment wages.

A comparison of the re-employment wages over the unemployment duration, separated
by spells delivers further insights into how comparable first and second spells are. Figure 6
illustrates this graphically. The blue line in this figure shows mean re-employment wages of
individuals that experience their first unemployment spell. The red line plots the respective
re-employment wages for the second spell. In the first 40 bi-weeks (one-and-a-half years) the
two curves are very similar. After that, the red curve gets much more noisy. However, this is
due to the decreasing sample size of individuals that experience a second spell. Recall, that
we only observe roughly 19, 000 second spells and only a small subset of those have durations
in the range of 40 to 78 bi-weeks. We therefore attribute the noise and the differences to the
re-employment wages in the first spell to the relatively small sample size. In the appendix,
we show the same figure with the difference that we only consider individuals with two spells.
The two wage curves are very close to each other, but both curves show some noisy behavior,
due to the smaller sample.20

19We are currently working out the importance of wage heterogeneity.
20This essentially rules out varying wage variances that could in principle arise for individuals in their

second spell.
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5 Structural Estimation

5.1 Estimation Set-up
To estimate the model that we formulated in section 2, we impose the following functional

form on the arrival rate of jobs:

p(s, d, j) = 1− exp(−λ(d, j)s)
λ(d, j) = exp(φd+ κj)

where κj denotes search types, and φ captues search decay. Search costs are given in expo-
nential form by ψ(s) = A(exp(αs)− 1), and the instantenous utility function is a standard
CRRA utility function, u(c) = c1−γ

1−γ , where γ is the risk aversion parameter and at the same
time the inverse of the intertemporal elasticity of substitution.21 The choice of the search
cost function and the arrival function allows for a closed form solution of the optimal search
effort. In terms of heterogeneity κ, we allow for three different arrival rate types, i.e. one
type with a high arrival rate, one with a medium arrival rate and one with a low arrival
rate. Equivalently, one can interpret this as three different search cost types. The second
dimension of heterogeneity is that we allow for three different initial savings positions of
individuals, namely k0j. For now, we set the three savings types to 0, 1000, and 2000 euros
of initial savings with a uniform distribution of the three types.22 This gives in total J = 9
different types, since we allow any combination of arrival rate heterogeneity and savings
type. The different κj and the probability distribution of κj will be estimated within the
model. Search decay is modelled as a proportional decrease in the arrival rate of job offers
over the unemployment spell. The parameter φ captures the magnitude of the search decay
and will be estimated. Skill decay is modelled in proportional form, i.e. wd = w0ξ

d. For now,
we abstract from wage heterogeneity and set w0 = 950 which is the mean re-employment
wage of individuals exiting unemployment in the first two weeks of unemployment.23 Note,
all numerical values are in euros and in 14-day intervals, that is bi-weeks, since we also
define hazards in 14-day intervals. We set unemplyoment benefits to bd = 610 ∀d, which is
a replacement rate of 64% (the average of what singles and married receive) and close to
the actual UI system. After UI benefits expire, individuals receive unemployment assistance
bUA = 300, which is close to the social welfare benefit level in Germany.

We set the interest rate for individuals to R = 1, and choose a bi-weekly discount factor
of β = 0.998, which amounts to an annual discount factor of roughly 0.995. The destruction
rate of jobs is set to δ = 0.005, which leads to an average job duration of 7.5 years. We set E,

21Alternatively, one could think about a CARA utility specification. The constant relative risk aversion
choice is motivated by the possibility of wealth effects, which implies different attitutes toward gambles with
respect to wealth (, i.e. individuals that have less savings will search more). Shimer and Werning (2008)
compare the implications of CARA and CRRA to optimal UI and find only minor differences, because wealth
effects are quantitatively very small in a search model like ours.

22In a future version of the paper we want to relax this assumption, by using different data on savings
of unemployed individuals, to appropriately match the savings types in the population. For now, the above
assumption is roughly in line with what many unemployed have in savings.

23We already modelled wage heterogeneity via different observable wage cells and this will be included in
a future version of the paper.
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the period when the model becomes stationary after around 1.5 years, since empirically, at
this point in time hazard and wage curves already faded out and there seems to be no further
decrease in hazards and re-employment wages.24 Finally, we normalize the parameters of
the search cost function to A = 0.001 and α = 1, since they are not separately identified
from the arrival function parameters. This leaves us with the following parameters to be
estimated:

θ = {γ, ξ, φ, κ, F (κ)}

In words, we estimate the risk aversion parameter, skill decay, search decay and search het-
erogeneity parameters and the respective search heterogeneity distribution F .

In order to estimate the parameter vector θ, we apply a classical minimum distance
(CMD) estimator in the fashion of DellaVigna et al. (2015):

min
θ

(m(θ)− m̂)′W (m(θ)− m̂) (7)

wherem(θ) is a vector of model-implied hazard and wage moments, m̂ is a vector of empirical
hazard and wage moments, and W is the optimal weighting matrix with the inverse moment
variances on the diagonal and zeros off the diagonal. The theoretical moments are simulated
from the search model and the reduced form moments are estimated as described in section
4. The vector of moments contains 39 univariate hazard rates for d ∈ [2, 40], where we leave
out the first period to avoid job-to-job transitions. Further, the moment vector consists of
the joint hazard distribution for d × d ∈ [2, 40] × [2, 40]. This amounts to 780 joint hazard
moments. We use univariate wage moments from duration 2 onwards, which gives 39 wage
moments. The last moment we use is the covariance in unemployment durations. In total,
the vector m contains 859 moments for estimation. Minimizing (1) with respect to θ gives us
the estimated parameter vector. The CMD criterion essentially chooses parameters in such
a way, that the distance between the model-implied moments and the observed empirical
moments becomes smallest. Standard errors are then computed as the root of the diagonal
elements of the variance-covariance matrix of θ, which can be calculated as C = (H ′WH)−1,
where W is the weighting matrix and H is the Jacobian of the objective function evaluated
at the estimated parameter values.

5.2 Identification
The parameters are jointly identified if any parameter vector θ has distinct predictions

for the behavior of agents. Intuitively, changing a certain parameter needs to have different
implications on the moment vector m(θ) than changing another parameter. In our model,
the key challenge for estimation is the separate identification of the heterogeneity parameters
κ and the search decay parameter φ, since both generate falling hazards. In general, in a
sample of individuals experiencing one unemployment spell, search decay and heterogenous
search ability are not identified seperately. This is because, search decay and heterogene-
ity have the same implications for the univariate hazard moments.25 However, in a sample

24Robustness checks on all of these choices will follow.
25If one is willing to make strong functional form assumptions identification can be achieved. However,

then identification comes purely from the functional form of the specified problem.
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of unemployment spells with individuals that experience multiple spells, search decay and
unobserved heterogeneity can in principle be identified separately and non-parametrically
from the joint hazard distribution, because heterogeneity and search decay have different
implications for the joint hazard moments. (See Alvarez, Borovicková, and Shimer (2015)
for formal proofs of the logic applied here.) More precisely, the joint duration distribution,26

that is the distribution of unemployment durations in the two first spells of individuals,
allows to distinguish between the two effects. In the context of our model, we include the
joint hazard distribution as additional moments for estimation. This allows us to identify
and estimate search decay and heterogeneity separately, without relying on any particular
functional forms.

Intuitively, the covariance between unemployment durations in the first and the second
spell is different in an environment with only heterogeneity or only search decay. In the
case where there is no heterogeneity but search decay the theoretical covariance between
unemployment durations is zero. If there is heterogeneity, the covariance is positive, be-
cause the duration of the first unemployment spell is predictive of the duration of the second
spell. Therefore a regression of the duration in the second spell on the duration in the first
spell is a measure of the importance of heterogeneity. The joint duration distribution, or
equivalently the joint hazard distribution, contains all information on any moments (in par-
ticular covariance moments), and is therefore a way to separately identify search decay and
heterogeneity, without imposing specific functional forms, because the reduced-form joint
hazard distribution can be estimated non-parametrically from the data as described in sec-
tion 4. Finally, we apply the logic developed in Alvarez, Borovicková, and Shimer (2015) and
match the empirical joint hazard distribution to the model-implied joint hazard distribution
via minimum-distance estimation. Heuristically, the observations of multiple unemployment
spells is similar to the estimation of a fixed effect for individuals, which separates hetero-
geneity from search decay. An assumption we make is that the two unemplyment spells are
independent of each other and identical.27

For now, we do not allow for unobserved wage heterogeneity and therefore skill decay
is identified from the wage moments. Intuitively, if conditional on sorting on observables
and unobservables over the unemployment duration re-employment wages decrease, then we
attribute this as skill decay. The key identifying assumption is that observables and un-
observables that influence re-employment wages wid are not correlated with unemployment
duration. As we showed in section 4.3, there seems to be no important sorting on observables
over the unemployment duration. This also suggests that any unobservable characteristics
that determine wages and that are correlated with observables do not correlate with un-
employment duration, and hence do not introduce a bias. However, unobservable wage
determinants that are uncorrelated with observables or share non-linear relationships with

26Which is a one-to-one mapping from the joint hazard distribution.
27This assumption might be violated if for example individuals with a second spell are more likely of the

bad type. In our model, where the destruction rate δ is uncorrelated with heterogeneity, this assumption
holds. Also differences in the institutional environment would violate the assumption of independent and
identical spells. However, we take account for this possibilty by only selecting individuals into the sample
that face the same institutional environment. It is possible to considerably weaken the assumption, by
simulating the model forward for the entire lifetime of an agent.
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TABLE 2: Parameters for model simulation

Parameter Value

γ 1.2
A 0.001
α 1
κ0 -4
β 0.998
δ 0.000
k0 1000
T 25
E 40
bUA 300

Notes: Table 2 summarizes the parameter choices for
the simulation results.

obserbvables can bias the estimation of φ.28

Finally, the risk aversion γ is identified jointly with the other parameters and intuitively
from the univariate hazard distribution and its shape along the unemployment duration. In
a future version of the paper we want to use additional information and data sources on
savings behavior of unemployed, which can help to identify risk aversion from additional
moments on the consumption smoothing behavior of individuals.

5.3 Estimation Results
This section is currently work in progress.

6 Welfare Analysis
In this section, we provide simulation results to illustrate our approach. In the following,

we use a calibrated version of the model, as we are currently working on refining our model
estimates. For the benchmark simulations, we use the parameter values shown in table 2.

The aim of this section is twofold. First, we show how duration dependence and hetero-
geneity influence the optimal schedule from the planner’s problem as described in section 2.2.
Second, we also characterize the impact on local welfare gains, starting from the benchmark
schedule. This allows us to show more precisely how duration dependence and selection
affect the solution to the planner’s problem.

For the moment, we focus on optimal two-step schedules, as these are numerically con-
venient. The agent receives b1 for the first 13 bi-weeks of unemployment and b2 for the next

28We can in principle also allow for unobserved wage heterogeneity. One can then apply the same logic as
before, i.e. matching the joint wage distribution, for a separate identification of skill decay and unobserved
skill heterogeneity.
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FIGURE 7: Curvature of planner objective function

Notes: This figure plots the curvature of the objective function of the planner in the benchmark case
without duration dependence and dynamic selection. The planner maximizes

∑
ωiαiV

u(0, kj0, j) over b0
and b1, subject to the budget constraint, which is used to eliminate the tax. The two axes in the lower plain
plot the choice variables of the planner. The third dimension shows the value of the objective of the planner.

13 bi-weeks. The benefits are financed by a proportional tax τ on wages. The government
solves the problem from section 2.2 and has to optimally choose b1, b2 and τ . To solve the
problem, we calculate the objective function on a grid for b1 and b2. For each combination of
benefits, we use a non-linear equation solver to calculate the corresponding tax rate which
balances the budget.

For the benchmark case without duration dependence or selection, figure 7 shows that
the objective function is in fact strictly concave and has a unique global maximum. This
maximum, which we calculate using a constrained optimization routine, is shown in panel
(a) of figure 8. The benchmark schedule is slightly decreasing and pays a replacement rate
of about 70% in the first half of the spell and about 60% in the second half. Panel (e)
shows the sufficient statistics evaluated at the benchmark schedule. Note that consumption
smoothing gains and moral hazard costs are shown at each duration, while optimal insurance
problem is so far restricted to two-step schedules. Whenever CSd > MHd, a small increase
in benefits at d increases welfare. Panel (e) shows that a fully flexible planner would decrease
benefits at the very end of the spell, as moral hazard costs are greater than the smoothing
gains and increase them shortly before. The optimal two-step schedule balances these two
considerations, so that essentially the integral between the curves in each half of the spell
should be zero.

In panel (b), we introduce skill decay (ξ = 0.995) . Compared to the benchmark schedule,
the optimal replacement rate increases for each step of the schedule. In addition, benefits
at the end of the spell are now higher than at the beginning. Panel (f) shows the reason for
these results. The sufficient statistics from the model with skill decay are evaluated at the
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benchmark schedule. The consumption smoothing gains are always greater than the moral
hazard costs, which corresponds to the fact that both replacement rates increased in panel
(b). Importantly, the slope of the moral hazard costs is much lower than before, while the
consumption smoothing gains change only a little. As a result, the optimal schedule can be
upward sloping.

In panel (c), we show the results for search decay (φ = −0.05). The first replacement rate
barely changes, but the second one is much higher than before. Again, the optimal schedule
is upward sloping. Panel (g) shows that the mechanism behind this result is very similar to
the case of skill decay. The consumption smoothing gains decrease a little relative to the
benchmark case, but moral hazard costs become much less steep. The local welfare gains
based on the sufficient statistics are quite informative about the globally optimal schedule.
For example, the difference between CS and MH in the second half of the spell is bigger for
skill decay than for search decay and correspondingly, the optimal replacement rate for skill
decay is higher.

Finally, panel (d) shows the results for heterogeneity (K = 3, κ0 = −4, κ1 = κ0 + 0.8,
κ2 = κ0 − 0.8) . The optimal replacement rate in the beginning is a bit lower than before.
In the end of the spell, the replacement rate is higher than in the benchmark schedule, so
that the resulting schedule is flat. Importantly, heterogeneity contributes to lower (and flat)
moral hazard costs at the end of the spell.

Taken together, these simulations illustrate how to use the estimated model to separate
the effects of duration dependence and heterogeneity on optimal UI. Analyzing the local
welfare effects is particularly helpful, as it gives a clear intuition about why the solution to
the optimal insurance changes with each of the margins.
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7 Conclusion
In this paper, we analyze how duration dependence and dynamic selection influence the

timing of unemployment benefits. We estimate a structural job search model and provide
counterfactual simulations in which we isolate the role of each effect. In addition, we use
sufficient statistics formulas to connect the primitives of our model to consumption smoothing
gains and moral hazard costs, which are relevant for policy. So far, our simulations illustrate
the potential role of duration dependence and heterogeneity on UI. In particular, they can
push towards an inclining schedule. This is an important insight, as many papers in the
existing literature argue in favor of decreasing schedules.

In the next version of this draft, we would like to address a couple of issues. First, the
results from the structural estimation were not included in this draft. Second, we are work-
ing on implementing the general sufficient statistics formula, which we derive in appendix B.
Third, we want to make progess on analytically characterizing the planner’s problem. This
might be interesting, as we currently restrict the schedule to have a numerically tractable
dimension. Fourth, we want to supplement our administrative unemployment records by
data on savings, e.g. by using an income and wealth survey by the German Central Bank
(Bundesbank Panel on Household Finances). This allows to make a more reasonable assump-
tion on initial asset levels and may also provide additional identification of the risk aversion
parameter. Finally, we want to include some additional features into our structural model,
like unobserved heterogeneity in wages.
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Appendix

Appendix A: Numerical Solution of Non-Stationary Search Model
In this part of the appendix we discuss the numerical solution of the non-stationary search

model. As solution method we use policy function iteration, namely the Howard improvement
algorithm, as described in Judd (1998). Assume for simplicity that J = 1, i.e. that there
is only one type of agent. The major challenge in solving the model is then twofold: (a)
the non-stationarity of the model implies that the unemployment duration d enters the state
space, and (b) since we allow agents to save, the stock of savings in period d also enters the
state space, which is a continuous state variable that needs to be interpolated. In a stationary
model (as in Lentz (2009)) with a continuous state space, one has to iterate on a single policy
function (or alternatively the value function) to arrive at a solution. In every iteration step
one has to solve one (numerical) optimization problem, namely the optimal choice of k′ in
order to update the policy function. In a non-stationary envirnoment as ours, this needs
to be done for every point in the time dimension. Since we assume that at some period E
the model becomes stationary, we need to solve E optimization steps for every iteration in
order to update the policy function once.29 If one then allows for search heterogeneity (and
possibly observable cells), as we do, then this expands to E ∗ J optimization steps for every
iteration of the policy function.30 In order to estimate the model, one needs to evaluate the
criterion function for every parameter vector numerically multiple times. Therefore, in every
iteration of the optimization algorithm the whole model needs to be solved multiple times.
This can quickly become numerically intractable, in particular for the estimation. We use
the following numerical approach to solve the model in a short amount of time:31

1. We define a discrete grid on the savings state space [0, kmax], where we set the lower
bound equal to the borrowing constraint and the upper bound to kmax = 4000 which is
large enough such that it hardly ever binds in our setting. Note, that the unemployed
deplete their assets and therefore never move to savings larger than k0j for constant
benefits for a large set of plausible values on the interest rate R and the discount factor
β. We set the number of grid points to N = 401 equally spaced points in the savings
space. Denote the space K.32 Next, we define a second grid in the savings space with
42 grid points, where we put more grid points close to the lower bound on savings and
less and less grid points in areas with high savings. This choice is motivated by the
fact that the policy function has more curvature close to the borrowing constraint and
becomes essentially linear for savings larger than k = 500.

2. In order to solve the policy function iteration quickly, informed guesses about the
value functions, which need to be used as starting condition, speed up the solution.

29As Van den Berg (1990) shows one needs to make the assumption that the model becomes stationary at
some point. If E is large enough this is not a restrictive assumption, quantitatively.

30We use policy function iteration instead of value function iteration, since the policy function usually
takes much less iterations than the value function to converge.

31We use MATLAB to compute the model and integrate C functions for the interpolation steps.
32For robustness we also tried out different larger kmax, but the model outcomes were unchanged. We also

increased the number of grid points, but the model outcomes are also unchanged to this.

29



Therefore, we program a version with hand-to-mouth agents and solve this problem via
value function iteration. Since there is no continuous state space in a model without
savings one can solve the hand-to-mouth model very quickly. The converged value
funtions of the hand-to-mouth model are then used as initial guesses for the value
functions of the savings model. Note, that the value functions in the hand-to-mouth
model are two E × J matrix on which we iterate (for the employed and unemployed).
In the savings problem, this becomes an E × J matrix of value functions, where the
argument of the function is the savings state. The initial guess for the policy function
is k′ := gπd,j(k) = k, where g maps from the state space into the choice space, and
there is one policy function for every type, every duration and every state of the world
π ∈ {e, u} (employed and unemployed).

3. Having defined all starting conditions and discretizations, we can move to the policy
function iteration. The procedure here is as follows:

• Use the initial guess of the policy function gπ0 and evaluate it at every point in
the small savings grid. Note, gπl denotes a matrix of policy functions for types
j and durations d; subscript l denotes the iteration step. There are two such
matrices, one for π = e and one for π = u.
• Update the policy function of the employed to get ge

l+1 on the small savings grid
by solving the Euler equation of the employed with respect to the state k. This
has a closed form and does not require numerical optimization. Hence, the policy
function is updated exactly on the small grid for the employed.33

• Update the policy function for the unemployed to get gu
l+1, exactly as for the

employed. However, two additional steps are necessary. First, one needs to solve
for the optimal search effort, which has a closed form with the functional form
assumptions we made.

s = 1
α + λ(d, j) ln

(
βλ(d, j)(V e

l (d, k′, j)− V u
l (d, k′, j))

Aα

)

One only plugs in the guesses for the value functions and evaluates the search
effort for every k′ ∈ K and every d, j combination; where k′ denotes the optimal
choice, given the current guess of the policy function. Second, the Euler equation
for the unemployed contains the derivative of the arrival function p(·), which can
also be evaluated analytically. Then one solves the Euler equation with respect
to the state k and updates the policy function via the Euler equation for the
unemployed.
• Perform linear interpolations of the policy function of the employed from the small

savings grid to the large savings grid with N grid points. Hence, for every point
in K the policy function of the employed gives us the optimal choice k′ ∈ K (full
discretization). The policy function can therefore be re-interpreted as a matrix
Qe that maps from any point in the state space to the closest optimal point in

33The method is called engogenous grid point method and is developed in Carroll (2006).
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the choice space. The definition of the entries of Qe (which is N × N) for some
type and some duration is as follows:

Qe
mn =

1, if k′n = ge(km)
0, otherwise

(A1)

• In order to update the value function, we can use matrix inversion (Judd (1998)).34

The update of the value function is then given by:

V e
l+1(d, ·, j) = (I − β(1− δ)Qe)−1 [u(·) + βδQeV u

l (0, ·, j)] (A2)

where V e
l+1(d, ·, j), u(·) and V u

l (0, ·, j) denote N × 1 vectors in the large savings
grid. Note, there is one matrix Qe for every type j and every durartion d. To
avoid calculating E ∗ J updates of the value function of the employed, we only
update the value function for some subset of the E durations and then linearly
interpolate through the duration space to obtain the full matrix of value functions
for the employed.35

• Having updated the value functions for the employed we can update the value
function of the unemployed recursively. First, apply the same updating approach
as above for V u(E, k, j) only, by defining an analogous Qu to arrive at the up-
date of the value function of the unemployed for the last period (the stationary
environment). Second, recursively update the other value functions by using the
definition of the value function, starting from E:

V u
l (d− 1, k, j) = u(cu) + βp(s, d, j)V e

l (d, k′, j) + β(1− p(s, d, j))V u
l (d, k′, j) (A3)

Note, there is no interpolation over the duration space necessary and only one
matrix inversion for every type, namely in period E.
• Hence we updated all policy functions and all value functions, from iteration l to
l + 1.
• Iterate the value functions (and policy functions) until convergence.

4. The value function iteration needs only be done for the search heterogeneity types,
but not for the different savings types, which eases the computational burden. This
is because we solve the value functions for a large grid of savings levels, and hence
implicitely solved it for any possible savings type in K (with the use of interpolation).

5. With the policy functions and value functions at hand we can now simulate the model
forward from initial starting conditions to derive consumption paths, savings behavior
and the search effort choice. The search effort choice can then directly be mapped into
hazard rates according to the formulas from section 4.

34Actually, we use the fact that Qe is sparse, which avoids a numerical inversion of the matrix.
35The interpolation is not problematic, because the differences in the V e(d, k, j) with respect to d are only

that wages differ between the value functions. Updating all value functions exactly does not change the
simulation results.
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From the model, we can then extract the theoretical moments, that are necessary for the
estimation of the model, in particular, the model implied univariate hazards, joint hazards,
and wage moments. Solving the agent problem is also a necessary requirement in order to
solve the planner problem for optimal UI schedules and employment taxes.
A final remark needs to be made about the properties of the agent problem. In order to
arrive at a unique maximum, the value function must be strictly concave in the choice
variables. This is ex-ante not guaranteed, as Lentz and Tranaes (2005) and Chetty (2008)
discuss. Simulation results in their papers and also our simulations show so far that the
value function seems to be strictly concave for most parameter values, hence we assume the
problem to be strictly concave as in Chetty (2008).

Appendix B: Derivation of general sufficient statistics formulas
In this section, we briefly describe the general version of the sufficient statistics formulas.

The procedure is similar to Kolsrud et al. (2015), the difference being that we introduce job
destruction, so that the formulas correspond exactly to our optimization problem. Recall
that the objective of the planner is to maximize the (type-weighted) utility of agents who
just became unemployed, i.e. V u(0, ·), subject to the budget constraint:

T̃∑
t=0

T∑
d=0

R−tbdP (πt = u,Dt = d) =
T̃∑
t=0

E∑
d=0

R−tτwdP (πt = e, D̃t = d)

T̃ is the terminal period (consider the limit towards∞ to get the formulas for infinitely-lived
agents). πt ∈ {e, u} denotes the employment state in period t, Dt is unemployment duration
and D̃t is the duration of the last spell, which is relevant due to skill decay. The government
has to pay R−tbd in every period t, in which the agent is unemployed with duration d. If
the individual is employed at wage wd, the government collects a tax of R−tτwd. Note that
we cannot express the probabilities just in terms of the survival function, as job destruction
leads to many different histories that may result in a specific employment state at any
point of time. Calculating the sufficient statistics requires simulation to approximate the
probabilities.

Consider the value function in sequence form (where s and k denote vectors of choices):

V = max
s,k

{ T̃∑
t=0

T̃∑
d=0

βtE
[
u(cut,d)

]
P (πt = u,Dt = d)

+
T̃∑
t=0

E∑
d=0

βtE
[
u(cet,d)

]
P (πt = e, D̃t = d)

}

The planner’s problem as described in section 2.2 maximizes V subject to the budget con-
straint and gives a global maximum of V on the budget set. The sufficient statistics approach
characterizes the corresponding first order conditions. Thus, take the derivative with respect
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to some bk using the envelope theorem:

∂V

∂bk
=

T̃∑
t=0

βt
∂E

[
u(cut,d)

]
∂c

P (πt = u,Dt = k)

+
T̃∑
t=0

E∑
d=0

βt
∂E

[
u(cet,d)

]
∂c

∂c

∂τ

∂τ

∂bk
P (πt = e, D̃t = d)

Next, we need an expression for ∂τ
∂bk

. Take the budget constraint and solve it for τ :

τ =
∑T̃
t=0

∑T
d=0R

−tbdP (πt = u,Dt = d)∑T̃
t=0

∑E
d=0R

−twdP (πt = e, D̃t = d)

Note that the probabilities are endogenous and depend on bk. Define

D̄k =
T̃∑
t=0

R−tP (πt = u,Dt = k)

B =
T̃∑
t=0

E∑
d=0

R−twdP (πt = e, D̃t = d)

Then, taking the derivative of τ with respect to bk results in the following expression, after
re-arranging terms:

∂τ

∂bk
= D̄k

B

(
1 +

T∑
l=0

εD̄l,bk
blD̄l

bkD̄k

)

Plugging this into the expression for ∂V
∂bk

leads to the following expression for CSk and MHk:

CSk = Eku
′(cu)− Eu′(ce)
Eu′(ce)

Eku
′(cu) =

T̃∑
t=0

βt
∂E

[
u(cut,d)

]
∂c

P (πt = u,Dt = k)

Eku
′(ce) =

T̃∑
t=0

E∑
d=0

βt
∂E

[
u(cet,d)

]
∂c

wd
D̄k

B
P (πt = e, D̃t = d)

MHk =
T∑
l=0

εD̄l,bk
blD̄l

bkD̄k

Note that this is an intuitive generalization of the case without job destruction. Now, the
key elasticities are those with respect to D̄k, which is the total (life-) time an agent spends
unemployed with duration k, discounted with the interest rate. The formulas for the case
with heterogenous agents follows immediately and essentially sums over different types (recall
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that the total number of types, I, includes both observed and unobserved heterogeneity):

D̄k =
T̃∑
t=0

R−tP (Xt = u,Dt = k)

B =
∑

αi
T̃∑
t=0

E∑
d=0

R−twd,iP (πt = e, D̃t = d, type = i)

Ekωu
′(cu) =

I∑
i=1

ωiαi
T̃∑
t=0

βt
∂E

[
u(cut,d,i)

]
∂c

P (πt = u,Dt = k, type = i)

Ekωu
′(ce) =

I∑
i=1

ωiαi
T̃∑
t=0

E∑
d=0

βt
∂E

[
u(cet,d,i)

]
∂c

wd,i
D̄k

B
P (πt = e, D̃t = d, type = i)

CSk = Ekωu
′(cu)− Eωu′(ce)
Eωu′(ce)

MHk =
T∑
l=0

εD̄l,bk
blD̄l

bkD̄k

To calculate the sufficient statistics given a set of primitives and an initial schedule,
we need to use simulation to average over all possible employment histories. CSk can be
calculated by drawing from the model and essentially averaging over the realized marginal
utilities for each type of agent, after having obtained D̄k and B in a similar way. To calculate
MHk, policy experiments are needed. We simulate D̄k for the intial schedule and a scenario,
in which bk was increased by 10, and use the results to compute the elascitities. Note that
this requires a rather high number of draws to eliminate simulation noise in the elasticities.

Appendix C: Institutional Details & Sample Selection
Our identification and estimation relies on multiple unemployment spells of individu-

als. As we discussed in section 3, identification is only valid if unemployed agents face the
same institutional environment in the two unemployment spells. In order to obtain such a
proper sample it is necessary to implement the main features of the German unemployment
insurance system. To do so, we restrict ourselves to unemployment spells starting in after
January 1st, 1983 until the end of the last day of 2007. Since our data ends in 2010, and we
consider unemployment spells up to three years, the end of 2007 sets a natural limit to the
last unemployment spells we can consider. We choose 1983 as the beginning, since we need
to observe the employment history of individuals four years prior to their unemployment
spell in order to determine UI eligibility. In Germany, the duration of UI recipiency depends
on the employment history in the last four years from January 1st 1983 until June 30th 1987,
the last three years from July 1st 1987 until January 31st 2006 and the last two years from
from February 1st 2006 until December 31st 2007. The number of years that are considered
for the employment history is legally called base period (Rahmenfristen). In our analysis, we
will only consider individuals that are eligible for 12 months of unemployment benefits when
they lose their job. The general rule is determined by an abeyance ratio (Anwartschaftsver-
hältnis). The abeyance rule says that the months worked in the base period divided by 3
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TABLE A1: Potential unemployment benefit duration with respect to age and employment
history

Months
worked in
base period

1.1.83 -
31.12.84
(4 years)

1.1.85 -
31.12.85
(4 years)

1.1.86 -
30.6.87
(4 years)

1.7.87 -
31.3.97
(3 years)

1.4.97 -
31.12.04
(3 years)

1.1.05 -
31.1.06
(3 years)

1.2.06 -
31.12.07
(2 years)

12 4 4 4 6 6 6 6
16 4 4 4 8 8 8 8
18 6 6 6 8 8 8 8
20 6 6 6 10 10 10 10
24 8 8 8 12 12 12 12
28 8 8 8 14(≥42) 14(≥45) 12 12
30 10 10 10 14(≥42) 14(≥45) 15(≥55) 15(≥55)
32 10 10 10 16(≥42) 16(≥45) 15(≥55) 15(≥55)
36 12 12 12 18(≥42) 18(≥45) 18(≥55) 18(≥55)
40 12 12 12 20(≥44) 20(≥47) 18(≥55) 18(≥55)
42 12 14(≥49) 14(≥44) 20(≥44) 20(≥47) 18(≥55) 18(≥55)
44 12 14(≥49) 14(≥44) 22(≥44) 22(≥47) 18(≥55) 18(≥55)
48 12 16(≥49) 16(≥44) 24(≥49) 24(≥52) 18(≥55) 18(≥55)

Notes: This table is based on Hunt (1995); Schmieder, von Wachter, and Bender (2010). For individuals
with a certain age, special rules apply that extends the potential UI duration to more than 12 months.
For these individuals the base period is seven years. These individuals are not in our sample and the
table does not show the potential durations for these individuals. The table entries with ages in brackets
show, if individuals become eligible for longer durations due to their age (for working histories of less
than 48 months). All individuals that are below the age cutoff receive 12 months of benefits.

(from 1.1.1983 until 30.6.1987) or 2 (from 1.7.1987 until 31.12.2007) determines the maxi-
mal UI eligibility (abstracting from age cutoffs). Table A1 summarizes the mapping from
the months worked in the base period into the months of UI eligibility for the period from
1983 until 2007. (See Hunt (1995); Schmieder, von Wachter, and Bender (2010) for similar
tables.) For individuals with a certain age, special rules apply that extends the potential UI
duration to more than 12 months. For these individuals the base period is seven years. These
individuals are not in our sample and the table does not show the potential durations for
these individuals36. The table entries with ages in brackets show when individuals become
eligible for longer durations due to their age. All individuals that are below the age cutoff
receive 12 months of benefits. We drop all unemployment spells from our sample to which
certain age restrictions apply.

For individuals that experience their second unemployment spell complex carry-forward
rules apply if the second spell is not more than four years after the beginning of the first
spell. To avoid modelling these rules we restrict second spells to be at least four years after
the beginning of the first spell. Second, we restrict unemployment spells to individuals aged
between 20 and 55. For individuals older than 55 the German social security system offers

36I.e. the table ignores working histories of more than 48 months.
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several early retirement schemes. For individuals below the age of 20, there is often the op-
portunity to go back to some form of school. We then drop third and fourth unemployment
spells to avoid giving too much weight on these individuals. In total these are only 631 third
spells and a negligible amount of fourth spells. Further, we exclude any ambigous spells
from the sample. These are in particular the following cases that can arise: (a) individuals
that receive UI and UA at the same time for more than 30 days and (b) individuals that
are employed and receive UI at the same time for more than 14 days.37 If we observe two
consecutive unemployment spells within 14 days we pool them together and count it as one
spell. With all these restrictions we arrive at a final estimation sample of 201, 096 individu-
als, where 18, 257 individuals experience two spells. Hence our dataset consists of 219, 353
observations.

An unemployment spell is defined as the transition from employment to UI within 30
days. Individuals that register more than 30 days after their last job has ended are dropped,
to avoid voluntary quitters that have a waiting period of 3 months and to avoid mismeasuring
unemployment spells due to individuals that do not take-up UI within a month. Employ-
ment consists of either socially insured employment, apprenticeships, minor employment, or
other forms of registered employment and being eligible for 12 months of UI.38 We define un-
employment duration as the time between the start of UI recipiency until next employment
starts (similar as in Card, Chetty, and Weber (2007); Schmieder, von Wachter, and Bender
(2012)), though we also count moves to apprenticeship, or minor employment relationships
as re-employment.39 We also cap unemployment durations at 36 months, that is 72 bi-weeks.
This is necessary, because the data show sizeably many spells with a very long duration and
many individuals that never return to work. The re-employment wage is defined as the wage
the individual earns at the first employed position after unemployment.

Appendix D: Additional Reduced-form Results

37It is not entirely clear where these cases come from, however there are only a few of them.
38In a future version of this paper, we might restrict to transitions from socially insured employment to

UI only. Robustness checks on this will also be performed.
39We plan to perform robustness checks on this choice, too.
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TABLE A2: Descriptive statistics at the time of the spell

1st Spell 2nd Spell
Variable Mean Std.Dev. Mean Std.Dev.

Year of spell 1995.24 (6.89) 2000.11 (4.57)
Pre-unemployment wage e 845.45 (488.24) 991.24 (433.37)
Mean duration (weeks) 56.25 (57.09) 52.12 (54.76)
Age 30.15 (8.47) 34.66 (6.42)
Female 0.45 (0.50) 0.41 (0.49)
Married 0.40 (0.49) 0.46 (0.50)
Children 0.35 (0.48) 0.46 (0.50)
Education 1.79 (0.52) 1.92 (0.42)
Observations 201,096 18,257

Notes: Table A2 shows descriptive statistics of the final sample of unemployment spells. Column 1 shows
mean levels of several observable variables for individuals that experience at least one unemployment
spell. The terms in brackets denote the respective standard deviations. In the right two columns the
table shows observable characteristics for individuals who experience two unemployment spells at the
time of their second unemployment spell.

(a) Gender (b) Children

(c) Education (d) Age

FIGURE A1: Observables over unemployment duration

Notes: This figure shows how the first moment (mean) of the observable distribution changes over the
unemployment duration. Figure (a) shows the proportion of female unemployed in the sample (y-axis) at
duration d in bi-weeks (x-axis); panel (b) for the children dummy, panel (c) for mean education and panel
(d) for the age, respectively. for
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FIGURE A2: Reduced-form re-employment hazards by unemplyoment spell conditional on
two spells

Notes: Figure A2 presents the hazard rate in the sample of individuals experiencing two unemployment spells
only. The blue curve draws the non-parametric hazard as described in section 4.2 for the first unemployment
spell. The red curve draws the hazard function for the second spell of these individuals.

FIGURE A3: Reduced-form re-employment wages by unemplyoment spell conditional on
two spells

Notes: Figure A3 shows re-employment wages (y-axis) as a function of unemployment duration (x-axis).
The figure only uses individuals that experience two unemployment spells. The blue curve plots mean
re-employment wages of individuals in their first spell and the red curve for the second spell, respectively.
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