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1 Introduction

Who benefits and who is hurt how much when an economy grows or con-
tracts? The more traditional way of answering this question is to compare
data from two or more anonymous cross sections and gauge changing income
inequality among individuals or households. Calculations of cross-sectional
inequality measures such as Gini coefficients, income shares of particular
quantiles of the income distribution, and comparisons of Lorenz curves have
a long and distinguished history. A more recent technique within the anony-
mous tradition is to calculate Growth Incidence Curves (GICs) which, by
design, compare the growth of incomes among anonymous quantiles (Raval-
lion and Chen, 2003).

A newer way of gauging who benefits and who is hurt is to utilize data on
a panel of people and assess the pattern of panel income changes, allowing
people to change quantiles. Often called income mobility analysis, the assess-
ment of panel income changes usually is carried out by means of regressions
capturing income dynamics (e.g. Atkinson et al., 1992), or by constructing
what are called mobility profiles (e.g. Grimm, 2007; Van Kerm, 2009) or, syn-
onymously, non-anonymous Growth Incidence Curves (Bourguignon, 2011).

The fundamental difference between these two approaches is that the in-
come inequality approach treats people anonymously, while the panel data
approach works with the income changes of identified people in a panel, treat-
ing them non-anonymously across periods. More specifically, when looking
at income inequality using such familiar tools as Lorenz curves and inequality
indices, the analyst looks at the income of whoever is in the p’th position
in each distribution (initial and final) regardless of whether that is the same
person in one distribution as in the other. By contrast, when looking at
panel income changes, the analyst first identifies which individual is in the
p’th position in the initial distribution and follows that person over time,
even if that person is in a different position later on.

Thus, a statement about the persons in a particular group g say, the rich-
est 1% or poorest 10%, means different things in the two approaches. The
standard inequality analysis permits statements of the type “the anonymous
richest 1% got richer while the anonymous poorest 10% got poorer” while the
panel data analysis makes a different type of statement: “those who started
in the richest 1% experienced income changes of such and such amount while
those who started in the poorest 10% experienced income changes of a dif-
ferent amount.” To the extent that people move around within the income
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distribution, the two approaches provide different information.
In the literature, the anonymous approach has been explored in much

more detail than the panel one. However, as Bourguignon (2011) argues in
the context of income growth of countries in the world distribution of mean
incomes “if one is interested in whether global growth has been pro-poor [...]
there does not seem to be any good reason for ignoring what happened to
countries that grew fast enough to move out of the bottom deciles” [emphasis
in the original].

In practice, both approaches are meaningful. On the one hand, the panel
approach is intrinsically richer, as not only can we explore changes in the
(anonymous) marginal distributions across periods, but also individual tran-
sitions across them. However, for many applications the information provided
by the anonymous approach is sufficient. For instance, in the debate on the
political economy implications of growing inequality (Stiglitz, 2013, 2015;
Bourguignon, 2015), what matters is the gap between the top and bottom of
the income distribution, and not so much the income-origin of the rich and
the powerful.

Numerous empirical studies have shown that the exact same data can
produce markedly different patterns depending on whether the anonymous or
panel approach is used. For analyses comparing the two approaches applied
to the income growth of the same individuals or households, see Dragoset and
Fields (2008) on the United States, Grimm (2007) on Indonesia and Peru,
Khor and Pencavel (2010) on China, Palmisano and Peragine (2014) on Italy,
Fields et al. (2015) on Argentina, Mexico, and Venezuela, and Jenkins and
Van Kerm (2011) on Britain, among others. See also Bourguignon (2011)
on growth of mean incomes for countries in different deciles of the world per
capita income distribution.

Are cross-sectional changes favoring the anonymous rich over the anony-
mous poor necessarily accompanied by panel income changes favoring the
panel rich over the panel poor, and likewise for the anonymous poor and
panel poor?

The idea that a pattern of panel changes whereby those at the bottom
gain more than those at the top necessarily results in falling inequality was
first raised by Francis Galton in 1886. Later scholars demonstrated that
no such implication holds, and Galton’s assertion has come to be dubbed
“Galton’s fallacy” (see, for example, Bliss, 1999).

The literature also offers a claim regarding the opposite set of circum-
stances. Consider a panel of countries with per capita incomes in compara-
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ble currency units - Purchasing Power Parity-adjusted dollars, for example.
Define β-divergence (convergence) as arising when a regression of final log-
income on initial log-income produces a regression coefficient greater than
(less than) one. Define σ-convergence (divergence) as arising when the vari-
ance of log-incomes falls (rises) from the initial year to the final year. It
is proven in the literature that β-divergence measured in this way and σ-
convergence measured in this way cannot arise simultaneously - more specifi-
cally, σ-convergence implies β-convergence, but β-convergence does not imply
σ-convergence (Furceri, 2005; Wodon and Yitzhaki, 2006).

Is it possible to have convergent panel income changes- that is, the income
changes we see following named individuals over time are decreasing in initial
income- and simultaneously to have rising income inequality? Is it possible
to have divergent panel income changes along with falling income inequality?
Are the possibilities in times of economic growth different from those in times
of economic decline? When do these different possibilities arise?

The first purpose of this paper is to derive what is possible and what
is impossible. Contrary to the suggestions in the preceding paragraphs, we
show that it is indeed possible to have rising or falling inequality along with
convergent or divergent panel income changes, both in times of economic
growth and in times of economic decline; see Table 1 and Section 2.3.

The second purpose of this paper is to derive conditions under which, for
various measures of rising/falling inequality and various measures of conver-
gent/divergent panel income changes, each of the four possibilities can arise.
A number of propositions are derived; see Section 3.

Our paper is not the first one to derive conditions relating changes in
relative inequality to convergence and divergence in panel income changes
from a theoretical perspective. In addition to the aforementioned contribu-
tions by Furceri (2005) and Wodon and Yitzhaki (2006); Jenkins and Van
Kerm (2006) decompose changes in Generalized Gini indices (Donaldson and
Weymark, 1980) into two components reflecting share convergence and a
term reflecting re-ranking. Similarly, Nissanov and Silber (2009) propose an
alternative reconciliation of β- and σ-convergece, as defined above.

Our contribution to this literature is that unlike the studies just cited, our
reconciliation of changes in inequality and panel income changes is made us-
ing very general and widely used measures of both phenomena. In particular,
our analysis of inequality changes is made using three different approaches.
First we look at changes in commonly used inequality indices like the co-
efficient of variation, the variance of log-incomes, and the Gini. Then, we
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provide results for the cases of Lorenz-curve dominance. Finally, in cases
when the Lorenz curves cross, we also analyze changes in inequality using
the family of Transfer-sensitive inequality indices, whenever one distribution
third-order stochastically dominantes another one. Similarly, for the analysis
of panel income changes we rely on the analysis of linear regressions between
initial and final incomes, as traditionally used in studies of intra-generational
income mobility (e.g. Atkinson et al., 1992), inter-generational mobility (e.g.
Solon, 1999), and the macro literature on absolute convergence (e.g. Barro,
1991; Sala-i-Martin, 1996).1 By offering a reconciliation of widely used mea-
sures of inequality and panel income change, we then provide a framework
that can be used by these several literatures.

Overall, the results in this paper reaffirm what has been known in the
literature for some time: Whether income inequality rises or falls in the cross
section is one thing. Whether panel income changes are divergent or con-
vergent is another thing. Rising/falling inequality and divergent/convergent
panel income changes are both interesting; they are, however, different.

But the results here are not just a reaffirmation. This paper goes be-
yond the previous literature in deriving precise conditions under which i)
income inequality rises or falls, ii) panel income changes are divergent or
convergent, iii) the four possibilities in Table 1 can arise, and iv) certain
combinations cannot arise for particular measures of changing inequality and
convergence/divergence. These conditions are derived in Section 3 and sum-
marized in Section 4.

2 Measurement Issues and a Matrix of Pos-

sibilities

We begin by defining our terms precisely. The two key variables in this
research are income inequality and panel income changes. “Income” is the
term used for the economic variable of interest, which could be total income,
labor earnings, consumption, or something else. The income recipient will
be called a “person”, but the results apply equally to households, workers,
per capitas, or adult equivalents.

1In the macroeconomics literature the term “absolute convergence” is used when the
only explanatory variable in the regression is initial income.
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2.1 Income Inequality

When is income inequality rising or falling? The way we measure inequality
change is completely standard (e.g. Sen, 1997; Cowell, 2011), namely, we use
the Lorenz functional or a suitable inequality index to represent the inequality
at two points in time and then to compare them.

Income inequality and the change in income inequality are conceptualized
and measured in a number of ways. “Relative inequality” is concerned with
income comparisons measured in terms of ratios, “absolute inequality” with
income comparisons measured in terms of dollar differences.

A powerful and widely-used criterion for determining which of two income
distributions is relatively more equal than another is the three-part Lorenz
criterion, which states i) if Lorenz curve A lies somewhere above and never
below Lorenz curve B, A is more equal than B, ii) if Lorenz curves A and
B coincide, then A and B are equally unequal, and iii) if the Lorenz curves
of A and B cross, the relative inequalities of A and B cannot be compared
using the Lorenz criterion alone. Judging a Lorenz-dominant distribution to
be more equal than a Lorenz-dominated one is equivalent to making inequal-
ity comparisons on the basis of four commonly-accepted relative inequality
axioms: anonymity, scale-independence, population-independence, and the
transfer principle (Fields and Fei, 1978).

Yet, despite its appeal, the Lorenz criterion is not universally used for
two reasons: it is ordinal, and it is incomplete. When the Lorenz criterion
does render a verdict about which of two income distributions is more equal
than another, it can only say that A is more equal than B but not how much
more equal A is than B. And when Lorenz curves cross, the Lorenz criterion
cannot render a verdict.

Those analysts who seek a complete cardinal comparison of the inequali-
ties of two income distributions are led to use one or more inequality indices.
For present purposes, these indices can be put into three categories:

1. Lorenz-consistent relative inequality indices: An inequality index is
Lorenz-consistent if, when one Lorenz curve dominates another, the in-
dex registers the dominant distribution as (strictly) more equal (strong
Lorenz-consistency) or equally unequal (weak Lorenz-consistency). A
partial listing of strong Lorenz-consistent relative inequality indices in-
cludes the Gini coefficient, Atkinson index, Theil index, and the coef-
ficient of variation and its square. Included among the weakly Lorenz-
consistent inequality indices are the income share of the richest X%,
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income share of the poorest Y%, and the decile ratios (e.g. 90-10). For
details, see Sen (1997) and Cowell (2011).

2. Lorenz-inconsistent relative inequality indices: An inequality index is
Lorenz-inconsistent if, when one Lorenz curve dominates another, it is
ever the case that the index shows the Lorenz-dominant distribution to
be less equal. One commonly-used relative inequality index is Lorenz-
inconsistent: the variance of the logarithms of income. This index
violates the transfer principle - that is, it is possible to make a rank-
preserving transfer of income from a relatively rich person to a relative
poorer person and yet the index can register an increase in relative
inequality (Foster and Ok, 1999; Cowell, 2011).

3. Transfer-sensitive inequality indices: These indices are Lorenz-consistent,
but they can also unanimously rank distributions even in the presence
of crossings in Lorenz-curves, as long as one distribution third-order
stochastically dominates another. All members of the Atkinson’s index
family, the Theil index, and more generally all the Generalized entropy
measures with parameter smaller than 2 are “transfer-sensitive”. The
Gini index, however is not.

In our work below, we emphasize Lorenz curve comparisons and Lorenz-
consistent inequality indices. However, we give attention to the variance of
log-incomes despite its Lorenz-inconsistency, because of its widespread use
in the literature.

2.2 Divergent and Convergent Panel Income Changes

By definition, income mobility analysis entails looking at the joint distribu-
tion of incomes at two or more points in time. This is an analysis of panel
income changes since we follow a particular individual over time. Our anal-
ysis in this paper is limited to income changes between an initial period and
a final period.

The income mobility literature distinguishes six mobility concepts: time-
independence, positional movement, share movement, directional income
movement, non-directional income movement, and mobility as an equalizer of
longer-term incomes relative to initial (Fields, 2008). For purposes of char-
acterizing the pattern of panel income changes in this paper, the relevant
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concept is directional income movement among panel people - that is, who
gains or loses how much, from an initial date to a final one.

Panel income changes are said to be divergent when the income recipients
who started ahead on average get ahead faster than those who started behind.
It is convergent when those who started ahead on average get ahead more
slowly than those who started behind. It is neutral when neither is the case.

What it means to get ahead at a faster, slower, or same rate itself requires
careful specification. In the macroeconomics literature, the object of inter-
est is nearly always the growth rate in percentages, often approximated by
changes in log-income (see, for example, Barro, 1991; Sala-i-Martin, 1996).
On the other hand, the literature on panel income changes among individ-
uals or households presents a more varied picture; some studies use income
changes in dollars, while others use changes in log-dollars, exact percentage
changes, changes in income shares, or changes in income quantiles such as
deciles or centiles (see, for instance, Jäntti and Jenkins, 2015).

Much of the literature assesses divergence or convergence by assuming a
linear relationship between final income and initial income or between income
change and initial income. In this paper, we follow this approach as well.

Accordingly, we gauge divergence or convergence as follows. Consider
a generic income variable y, defined as a strictly monotonically increasing
function of income in dollars. We can have the levels-on-levels regression
y1 = αy + βyy0 + uy or the change-on-initial regression ∆y ≡ y1 − y0 =
γy+δyy0+uy. The two regressions are linked by the relationship δy = βy−1.
Divergence is said to arise when βy > 1, or equivalently, when δy > 0.
Likewise, we have convergence when βy < 1 ⇐⇒ δy < 0.

Since relative inequality is concerned with the distribution of income
shares, it is natural to compare it to a regression also expressed in shares.
Hence, whenever the regression s1 = αs + βss0 + us leads to a βs < 1 we will
denote it as there being “share convergence”. An alternative way to estimate
convergence in shares is through the regression

∆s = κ + λr0 + e.

In this case, whenever λ < 0 we will say that there is “share-on-ranks conver-
gence”. This regression will be useful in the context of analyzing convergence
and changes in the Gini index.

In spite of this natural connection between relative inequality and a share-
change regression, often when someone is interested in finding out whether
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“the rich got richer and the poor, poorer” the reference is to changes in
dollars and not merely in shares. For this reason we will also study changes
in dollars as well.

Finally, we may be interested in divergence or convergence of proportional
changes. In many applications economists have been interested in studying
whether proportional income changes are convergent or divergent. In par-
ticular they have studied whether on average initially richer individuals had
proportional income changes larger than those of initially poorer individuals.

We can approximate proportional changes using a log-log regression or we
can measure them exactly, in which case we would want to regress the (exact)
proportional change in dollars on initial dollars: pch d ≡ (d1 − d0)/d0 =
φ + θd0 + upch. In the latter case, exact proportional changes are divergent
or convergent according to whether θ is greater or less than zero.

Convergence in dollars and divergence in proportional changes cannot
coexist in periods of economic growth, since if the initially poor gain more
in dollars than the initially rich (i.e., there is convergence in dollars) then
proportional changes are necessarily convergent as well. However, the same
is not true in periods of economic decline. To appreciate this, consider a
hypothetical two-person economy with the following income transition

[2, 50] → [1, 45]

where the poor individual lost 1 dollar while the rich one lost 5 dollars. By
our definition there is convergence in dollars. Yet the 1-dollar loss represented
half of the poor individual’s income, while the 5-dollar loss represented only a
10% loss for the rich individual. Hence, in this example there was convergence
in dollars but divergence in proportional changes. The previous example
illustrates why an analysis of proportional income changes is an important
complement to the analysis of dollar changes and share changes, especially
during times of economic decline.

In summary, in our paper we will focus our attention on panel changes
of income measured in dollars and shares, as well as on proportional dollar
changes, both measured exactly or approximated through logarithms.

2.3 A Matrix of Possibilities

We have identified three ways of determining the direction of change in rel-
ative inequality - i) Lorenz-improvement and Lorenz-worsening, ii) Change
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in a Lorenz-consistent relative inequality index, and iii) Change in Lorenz-
inconsistent relative inequality measures - and four ways of assessing diver-
gence or convergence: i) Dollar changes, ii) Share changes, iii) Log-dollar
changes, and iv) Exact Proportional changes.

Can each possible combination of rising or falling relative inequality and
divergent or convergent panel income changes arise? We show in this paper
that the answer is yes, provided they are measured suitably. Table 2 displays
examples for each of the possible combinations.

To demonstrate the possibilities of most of the combinations, just two peo-
ple are needed. But to get the remaining combinations, we need to complicate
the examples by adding more people and choosing our measures carefully.

This matrix of possibilities shows a number of other things:

• Many but not all possibilities involve a Lorenz-dominance relationship
(27 out of 32 examples to be precise). When such a result holds, it is
stronger than a result for a particular inequality index, because it holds
for all Lorenz-consistent inequality indices.

• All four convergence rows are consistent with Lorenz-worsening and
Lorenz-improvement, both in times of positive economic growth and in
times of negative economic growth.

• Falling relative inequality as gauged by Lorenz-improvement is consis-
tent with all four types of convergence but not with divergent share
changes, divergent proportional changes, or divergent dollar changes in
times of negative economic growth.

• Falling relative inequality as gauged by a suitably chosen Lorenz-consistent
inequality measure is consistent with all types of divergence. However,
some of these combinations can only arise when the two Lorenz curves
cross.

• Even in the absence of positional change, it is possible to have Lorenz-
worsening together with convergent dollar changes in periods of eco-
nomic decline, and with convergent log-dollar changes, both under pos-
itive and negative growth.2

2It is easy to generate examples in these cells using only two individuals who change
positions between periods.
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Examples prove possibilities; they do not produce exact conditions. In
the next section, we derive a number of necessary and sufficient conditions
for the various possibilities.

3 Mathematical Results

In this section we analytically develop a set of results that establish the
connection between changes in relative inequality and our several income
change concepts. First, we present some notation and definitions, then in
sections 3.2-3.4 we derive conditions on possibilities and impossibilities for
different ways of measuring inequality and income changes. In everything
that follows we consider regressions done on population and abstract from
all issues of inference.

3.1 Notation and Definitions

Consider an economy with n individuals observed over two time periods,
initial (or 0), and final (or 1).

Denote by dit the income of individual i in period t measured in constant
monetary units (e.g., real dollars). We drop the individual subindex i to
denote vectors, e.g., dt = (d1t, d2t, . . . , dnt)

′.
The basic building block of panel data analysis is the panel data matrix

D = [d0, d1]. Let each element of D be transformed by dividing the dollar
incomes by mean income in that year µt. The resulting matrix of shares can
be written as S = [s0, s1]. In addition to income shares, we will also deal with
other strict monotonic transformations of income, like log-incomes, denoted
by ln dt.

More generically, when a result can be derived both for income in dollars
and for a transformation of it, we will denote by yt = f(dt) the income
variable transformed by the strictly monotonically increasing function f(·).

A crucial feature of the panel data matrix D is that it involves pairs
of incomes for each individual, which implies that if the i-th element of d0
is moved, the i-th element of d1 must also be moved to the same row. In
other words, in panel data analyses we are allowed to permute entire rows
of D, a property called Multi-period Anonymity. This contrasts with the
property of Single-period Anonymity (or simply Anonymity) commonly used
in the analysis of cross-sectional inequality. In the latter case, we are al-
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lowed to separately permute a given column of D without necessarily per-
muting the elements in other columns of the data matrix. In mobility studies
then, the assumption of single-period anonymity is replaced by multi-period
anonymity, where the income trajectories matter without having to look at
the names of the particular individuals experiencing such trajectories.

For the most part, income vectors and their transformations are sorted
in ascending order of individuals’ initial-period incomes.3 An exception to
this is the final income-share vector sc, where the sorting is ascending in
final-period income; such sorting is important for Lorenz curve calculations.

Definition 1. Vector of Final Shares in Ascending Order.
Let P (·) be a permutation operator. Then, define sc = (s1c, . . . , snc) as the
counterfactual final income-share vector when final incomes are sorted in
ascending order of final income, i.e.

sc ≡ P (s1) such that sic ≤ sjc ∀ i ≤ j. (1)

It is useful to illustrate the relationship between D, S, and sc with a
simple example. In particular, we display below a particular panel data
matrix D, together with its corresponding matrices S, and sc.

D =





1 3
2 1
10 9



 ; S =





0.23 0.69
0.46 0.23
2.31 2.08



 ; sc =





0.23
0.69
2.08





Another occasion where we don’t sort vectors in ascending order of initial
incomes is rit, which denotes the population-normalized rank of individual i
in period t, when the distribution in period t is sorted in ascending order of
income of that same period. In other words, if Rit is the rank of individual i
when the distribution is sorted in ascending order of income in period t, the
normalized rank equals rit = Rit/n.

With this notation we can now define the Lorenz Dominance criterion.

Definition 2. Lorenz Dominance.
Let sj0 be the initial income-share of the individual in position j, when shares
are sorted in ascending order of initial income. Let sjc be the final income-
share of the individual in position j, when shares are sorted in ascending

3This sorting is immaterial for the convergence regressions.
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order of final income. The final income distribution Lorenz-dominates the
initial one whenever

s1c + s2c + . . .+ sjc ≥ s10 + s20 + . . .+ sj0 for j = 1, 2, . . . , n - 1 and

s1c + s2c + . . .+ sjc > s10 + s20 + . . .+ sj0 for some j < n.
(2)

As previously mentioned, having the final period distribution Lorenz-
dominate the initial one means that the final distribution is more equally
distributed than the initial one according to this criterion. This situation is
sometimes also referred as a “Lorenz-improvement” when going from d0 to
d1. Similarly, if the previous inequalities are reversed we talk of a “Lorenz-
worsening”.4

Following standard notation, we will denote the Lorenz Curve of income
in period t by LCt, and LC1 ≻ LC0 means that the Lorenz curve in period
1 dominates that of period 0, namely incomes in period 1 are more equally
distributed than the ones in period 0 according to the Lorenz-criterion. If the
domination is weak we denote it as LC1 � LC0, which means that incomes
in period 1 are at least as equally distributed as those in period 0 by the
Lorenz criterion. I(·) will be used to denote an arbitrary relative inequality
measure.

Another concept that we will need throughout the paper is that of a
Rank-Preserving Transfer, defined next.

Definition 3. Equalizing Rank-Preserving Transfer.
A rank-preserving equalizing transfer h > 0 is a transfer of income between
two individuals with ranks i and j for dj0 > di0, such that:

dk0 = dk1 for k 6= i, j,

dj1 = dj0 − h,

di1 = di0 + h, where:

if j = i+ 1, h < (dj0 − di0)/2;

if j > i+ 1, h < min[(di+1,0 − di0), (dj0 − dj−1,0)].

4The literature usually expresses condition (2) using income as a share of total income.
In order to make an easier link with the regressions involving share changes we express it
in terms of shares of mean income. It is obvious that the Lorenz curves are the same in
the two cases, and hence the inequality comparisons using the Lorenz criteria are also the
same.
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A rank-preserving disequalizing transfer is defined similarly.5 Equalizing
transfers are sometimes called “progressive transfers”, while disequalizing
transfers are sometimes called “regressive transfers”.

Finally, recall the definitions of divergence and convergence and the ac-
companying notation.

Definition 4. Convergence and Divergence
For a generic income variable y, define the levels-on-levels regression

y1 = αy + βyy0 + uy (3.1)

or the change-on-initial regression

∆y ≡ y1 − y0 = γy + δyy0 + uy. (3.2)

Divergence arises when βy > 1, or equivalently, when δy > 0. Conver-
gence arises when βy < 1 , or equivalently, when δy < 0. Otherwise, the
income change patterns are deemed neutral.

An alternative way of estimating convergence in shares is through the
share-change on initial-rank regressions

∆s = κ + λr0 + e, (4)

in which case there will be “share-on-ranks” convergence whenever λ < 0,
divergence if λ > 0, otherwise the share changes are deemed neutral.

Finally, define the regression of the exact proportional changes in dollars
on initial dollars

pch d ≡ (d1 − d0)/d0 = φ+ θd0 + upch. (5)

Divergence arises when θ > 0. Convergence arises when θ < 0. Otherwise,
the proportional change patterns are deemed neutral.

If the income variable is expressed in dollars, we subscript the parameters
of the generic regressions (3.1) and (3.2) with “d”. If the income variable is
expressed in log-dollars, we subscript the parameters with “log”, and if the
income variable is expressed in shares, we subscript the parameters with “s”.

One final concept that we will need in order to establish some of the results
in the paper is “quadrant-dependence” (Lehmann, 1966), defined next.

5In this case, the final income of the poorer individual will be di1 = di0 − h, the final
income of the richer individual will be dj1 = dj0 + h, and the last two conditions are
replaced by h < min[di,0 − di−1,0, dj+1,0 − dj,0].
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Definition 5. Quadrant Dependence
Let X and Y be random variables with marginal cdf’s Fx(x) and Fy(y), re-
spectively, and with joint bivariate cdf H(x, y). We say the pair (X, Y ) is

i) positively quadrant-dependent if H(x, y) ≥ Fx(x)Fy(y) ∀x, y,

ii) negatively quadrant-dependent if H(x, y) ≤ Fx(x)Fy(y) ∀x, y.

More generally, when (X, Y ) satisfy either i) or ii) we say the pair is quadrant-
dependent.

The concept of quadrant-dependence is an alternative to the more commonly-
used covariance for measuring association between two random variables. In
this case, dependence is evaluated by comparing the probability of any quad-
rant X ≤ x Y ≤ y with the probability that would occur in case of in-
dependence between the two variables. In particular, condition i) (ii)) is a
positive(negative) concept of dependence because (X, Y ) are more(less) likely
to jointly be large or small than they would be in the case of independence.

It can be easily shown that quadrant-dependence is a stronger concept
than a linear association, as measured by a covariance (e.g. Lemma 3 in
Lehmann, 1966).6 In our context, the existence of quadrant-dependence will
prove useful because it allows us to derive results when one of our income
variables is transformed by a monotonic function.

3.2 Inequality Measures and Panel Income Changes

We begin our analysis by presenting results that link our four income change
regressions with some commonly used inequality measures. It is importat
to emphasize that Lorenz-domination or the absence thereof is not required
for any of the results in this section. Results under Lorenz-dominance will
follow in section 3.3.

3.2.1 Variance-based Measures

We begin with measures that are related to variance conditions. The reason
to begin with this family of inequality indices is that variances can naturally
be related to regression coefficients like the ones defined above.

6Positive(negative) quadrant-dependence between two variables implies a posi-
tive(negative) covariance between them, but not the other way around.
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Variance-based inequality measures are widely used in the literature. Not
only is the variance a natural measure of dispersion, but in the macro and
labor literatures, it is common to assess changes in relative inequality by
focusing on the variance of log-incomes, in spite of its Lorenz-inconsistency,
as already noted. Furthermore, it can easily be shown that the variance
of shares is the square of the coefficient of variation, a Lorenz-consistent
inequality measure (see Lemma 1 below).

Our first result links the variance of any monotonically increasing func-
tion of income in dollars y = f(d) (e.g. logarithms, shares, etc.) and the
coefficient of a regression of the changes in this generic variable y on its initial
level y0. Namely, we present a result concerning the relationship between the
changes in the variance of y and the coefficient δy in regression (3.2).

Proposition 1. Convergence and Changes in Variance for the Class
of Monotonic Transformations of Income in Dollars.
Let f(d) be any monotonically increasing function of income in dollars and
denote the value of this function by y. Consider the change-on-initial regres-
sion (3.2). Then:

i) If ∆V (y) < 0, then δy < 0, i.e., the changes in generic income are
convergent.

ii) If ∆V (y) ≥ 0, the changes in y can be either convergent or divergent.

Proof: See Appendix.
It is useful to also present the first result in its contrapositive mode. We

do this in the next corollary.

Corollary 1. If δy ≥ 0, then ∆V (y) ≥ 0.

Proposition 1 and its Corollary show that divergence in the changes of
a monotonically increasing function of income y = f(d) implies a rising
variance of this function, (or alternatively a falling variance of y implies
convergent changes of y). However, convergence does not imply a falling
variance: δy < 0 ; ∆V (y) < 0.

These results pertain to any monotonically increasing function of income,
as long as we use the same function y = f(d) as dependent and independent
variables, i.e. as long as we run share-changes on initial shares, dollar changes
on initial dollars, etc. As previously mentioned, a particular case of this result
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for the variance of logs and the coefficient in a log-change regression, was
derived independently by Furceri (2005) and Wodon and Yitzhaki (2006).

Applied to our selected regressions, these results relate convergence co-
efficients to three inequality measures (variance of dollars, variance of log-
dollars, and variance of shares). However, only one out of these three mea-
sures, the variance of shares, is Lorenz-consistent, a result that follows imme-
diately from the following Lemma and the fact that the coefficient of variation
is (strongly) Lorenz-consistent.

Lemma 1. Variance of Shares and Coefficient of Variation
Let CV (d) denote the coefficient of variation of income, then

CV 2(d) = V (s).

Proof: See Appendix.
We can derive a result relating dollar-change regressions

∆d = γd + δdd0 + ud (6)

to the coefficient of variation.

Proposition 2. Convergence in Dollars, Changes in the Coefficient
of Variation, and Economic Growth.

Let βd be defined by the final-on-initial regression (3.1) when income is
measured in dollars, and denote the correlation coefficient from this regression
by ρd. Let CV (dt) denote the coefficient of variation of income at period t,
and let g denote the economy-wide growth rate in incomes between year 0 and
year 1. Then there is divergence/convergence in dollars as follows:

βd ≷ 1 (i.e. δd ≷ 0) ⇐⇒ ρd
CV (d1)

CV (d0)
(1 + g) ≷ 1. (7)

Proof: See Appendix.
In fact, we can go further and provide precise conditions for when we

can observe the four combinations of falling/rising inequality, as measured
by variance-based measures of inequality, together with convergent/divergent
income changes as measured by the previous regressions. These conditions
are presented in Table 3 for the generic income variable y, and in Table 4 for
the coefficient of variation of incomes in dollars paired with a dollar-change
regression.
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It is instructive to illustrate how these conditions operate in a simple two-
person example. Consider in particular an economy in which the anonymous
income distribution changes from (1,3) to (1,5). The underlying possibilities
are:

Case I : [1, 3] →[1, 5]

Case II : [1, 3] →[5, 1].

In Case I, dollar changes are divergent, and the variance of dollars rises,
so we are in the cell (2,2) of Table 3. In Case II, however, the increase in
the variance of dollars ∆V (y) equals 6, while the variance of dollar changes,
V (∆d) equals 18. This puts us in cell (1,2), where convergent dollar changes
co-exist with a rising variance of dollars. In other words, the condition in cell
(1,2) illustrates that if income changes are large enough, then it is possible to
reconcile rising inequality (as measured by the variance of incomes in dollars),
together with convergent income changes.7

A look at the two panels of Table 4 shows that to make a rising coefficient
of variation compatible with convergent dollar changes, we must either have
a sufficiently strong economic decline (g < 0) or a sufficiently low ρd.

Consider an economy in which economic growth has taken place (i.e.,
g > 0) and income inequality as measured by the coefficient of variation
has risen (CV (d1) > CV (d0)). If initial and final incomes were perfectly
positively correlated - that is, if ρd were equal to +1- then applying equation
(7) we would know that panel income changes in dollars would necessarily be
divergent (i.e., βd > 1). However, if initial and final incomes are positively
correlated but not perfectly positively correlated (i.e., 0 < ρd < 1), room
is left open for the possibility that a growing economy with rising income
inequality might also have convergent dollar changes. Moreover, equation
(7) also tells us that the smaller is ρd, the more room there is for positive
economic growth, rising income inequality, and convergent dollar changes to
coexist.

Some analysts may implicitly be supposing that income recipients who
are high (low) to begin with will inevitably be high (low) at a later point in
time. Whether or not this is the case is an empirical question. The answer
should not, however, be assumed.

7A similar argument can be made for share and log-dollar changes when paired with
their respective variances.
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If during periods of economic decline the dollar losses of the poor are
larger than those of the rich, i.e., if there is divergence in dollars, then the
income share of the rich will grow and so will inequality. This accounts for
the impossibility result in cell (2,1) in part B of Table 4.

What if economic growth is positive and dollar changes are divergent? In
that case the dollar gains of the initially poor can be smaller than those of the
initially rich, yet the share gains of the anonymous poor can be higher than
the share gains of the anonymous rich (in which case there would be a fall
in relative inequality as in cell (2,1) in part A of Table 4). An example from
our Matrix of Possibilities (Table 2) illustrates this. Consider the transition
[5, 20] → [7, 23]. In this case, δd = 0.067, yet the CV falls by 0.067.

In more precise terms, as with any relative inequality index, the coefficient
of variation is independent of the measurement scale of income; yet the coeffi-
cient of a dollar-change regression is affected by proportional dollar-changes.
Hence, if positive economic growth is strong enough, it can generate diver-
gence in dollars by proportionally increasing incomes by 1 + g, even when
relative inequality is falling.

From now on, we will present possibility/impossibility results in Propo-
sitions and Corollaries, and express in Tables the precise conditions for
each combination of falling/rising inequality vs convergent/divergent income
changes.8

To close this section on variance-based inequality measures, we present a
result relating the coefficient of variation to a regression of exact proportional
changes under the more stringent condition of quadrant-dependence (see Def-
inition 5). First though, we present two useful Lemmas. The first result is
useful in establishing connections between share changes and the slope of
the exact proportional change regression (5). The second Lemma establishes
some key properties of variables that satisfy quadrant-dependence.9

Lemma 2. Share Changes and Exact Proportional Changes
Let θ be the slope of the exact proportional change regression (5) then:

sign(θ) = −sign

(

E

[

s1 − s0
s0

])

.

Proof: See Appendix.

8The derivations of the conditions in all the tables are included in an online appendix.
9The Lemma follows easily from the results derived in Lehmann (1966). We present a

proof for the sake of completeness.
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Lemma 3. Properties of Quadrant-Dependent Variables
Let (X, Y ) be a bivariate random variable. Let f(X) be a strictly mono-

tonically increasing function of X. Similarly, let g(X) be a strictly mono-
tonically decreasing function of X. If (X, Y ) is quadrant-dependent, then

i) sign(cov(X, Y )) = sign(cov(f(X), Y )

ii) sign(cov(X, Y )) = −sign(cov(g(X), Y )

provided the covariances exist.

Proof: See Appendix.

Proposition 3. Convergence in Exact Proportional Changes and
Changes in the Coefficient of Variation

Let θ be defined by the exact proportional change regression (5). Assume
that the bivariate random variable, (s0,∆s) is quadrant-dependent. Then:

i) If ∆CV (d) < 0, then θ < 0, i.e., the exact proportional changes are
convergent.

ii) If ∆CV (d) ≥ 0, the exact proportional changes can be either convergent
or divergent.

Proof: See Appendix.
Furthermore, for part i) in this last proposition, we can provide the cor-

responding contrapositive form as a Corollary.

Corollary 2. Under the assumptions stated in Proposition 3, if θ ≥ 0, then
∆CV (d) ≥ 0.

3.2.2 Gini Index

The Gini index is probably the most widely used inequality measure in the
literature. In this section we derive conditions relating our panel regressions
to this index.

We begin by relating changes in the Gini and share-on-ranks convergence,
i.e. share convergence, as gauged by equation (4), i.e.,

∆s = κ + λr0 + e.
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Proposition 4. Share-on-Ranks Convergence and Changes in the
Gini

Let Gt be the Gini index for dollars in period t, and let λ be given by
equation (4). Then:

i) If ∆G < 0, then λ < 0, i.e., the share-on-rank changes are convergent.

ii) If when the income vector goes from d0 to d1, the transition involves no
change in positions among panel people, then ∆G > 0 implies λ > 0.

iii) If positional changes occur, then a rising Gini may be consistent with
either convergent or divergent share-on-rank changes as measured by λ.

Proof: See Appendix.
As before, we can also establish a set of conditions relating Gini changes

to share-on-ranks convergence. We present these conditions in Table 5.
In addition to the previous results, we can also establish a connection be-

tween changes in the Gini and dollar-changes and exact proportional changes,
under the assumption of quadrant-dependence. We present those results
next.10

Proposition 5. Convergence in Dollars, Changes in the Gini, and
Economic Growth

Let δd be defined by the regression of change in dollars on initial dollars
(6), and let g denote the economy-wide growth rate in incomes between year 0
and year 1. Assume that the bivariate random variable, (r0,∆s) is quadrant-
dependent. Then:

i) If ∆G < 0 and g < 0, then δd < 0, i.e., the dollar changes are conver-
gent.

ii) If when the income vector goes from d0 to d1, a) the transition involves
no change in positions among panel people, and b) g ≥ 0, then ∆G > 0
implies δd > 0.

iii) If positional changes occur, then a rising Gini may be consistent with
either convergent or divergent dollar changes as measured by δd.

10Wodon and Yitzhaki (2006) derived a different relation between changes in the Gini
and a convergence coefficient using what they call a “Gini-regression” of final income on
initial income.
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Proof: See Appendix.

Proposition 6. Convergence in Exact Proportional Changes and
Changes in the Gini

Let θ be defined by the exact proportional change regression (5). Assume
that the bivariate variables (r0,∆s) are quadrant-dependent. Then:

i) If ∆G < 0, then θ < 0, i.e., the exact proportional changes are conver-
gent.

ii) If when the income vector goes from d0 to d1, the transition involves no
change in positions among panel people, then ∆G > 0 implies θ > 0.

iii) If positional changes occur, then a rising Gini may be consistent with
either convergent or divergent exact proportional changes as measured
by θ.

Proof: See Appendix.
In this section we have shown how the coefficients from our different

income-change regressions relate to variance-based inequality measures (in-
cluding the coefficient of variation) and to the Gini index. In some of the
relations derived, we need to invoke additional conditions on the data, such
as quadrant-dependence, in order for the results to hold.

We now turn to results linking our income change regressions to changes
in inequality under Lorenz dominance.

3.3 Lorenz Dominance and Income Changes

In spite of the wide use of the Gini, the coefficient of variation, and the vari-
ance of logs, researchers often use other Lorenz-consistent inequality mea-
sures like the Theil, various decile ratios, among others. Not only is the
Lorenz Dominance criterion the most accepted way of judging whether rela-
tive inequality has risen or fallen, but also whenever this criterion provides an
ordering of the inequalities of two distributions, all Lorenz-consistent indices
agree with that ordering.

It turns out that we can find a set useful results linking Lorenz Dominance
to our previous four regression methods. We present those results next. It
then follows that all these results also apply to the family of Lorenz-consistent
inequality indices whenever there are no crossings of Lorenz curves. In this
sense, the results presented in this section are more general than the ones of
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section 3.2. The price to pay for the greater generality in this first sense, is
however, that the results here derived will not apply in the case of Lorenz-
crossings, so in this second sense, the results are less general.

3.3.1 Lorenz Dominance and Share Changes

In this section we derive a connection between the Lorenz Dominance crite-
rion

s1c + s2c + . . .+ sjc ≥ s10 + s20 + . . .+ sj0 for j = 1, 2, . . . , n - 1 and

s1c + s2c + . . .+ sjc > s10 + s20 + . . .+ sj0 for some j < n.
(2)

and a share-change regression

∆s ≡ s1 − s0 = γs + δss0 + us. (8)

Equations (2) and (8) both involve initial and final income-shares. How-
ever, the final period shares appear sorted differently in the two expressions.
More specifically, in condition (2), final shares sc are sorted in ascending or-
der of final shares, while in equation (8) final shares s1 preserve the order of
initial shares.

It is easy to show that the sign of the coefficient δs in regression (8) is
determined by the sign of the covariance

cov(∆s, s0) =

∑

i(si1 − si0)si0
n

,

since average share changes are zero by construction.
Using vector sc as defined in (1), we can decompose this covariance as

cov(∆s, s0) =

∑

i[(si1 − sic) + (sic − si0)]si0
n

.

That is, whether share changes are convergent or divergent is determined by
the sum of two terms, a structural mobility term and an exchange mobility
term:

SM =

∑

i(sic − si0)si0
n

XM =

∑

i(si1 − sic)si0
n

.

(9)

SM captures the component of the covariance associated with changes in
the shape of the income distribution for anonymous people, and XM is the
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component of the covariance associated with positional change, under a fixed
marginal distribution.11

We can derive the following two key Lemmas for these terms.

Lemma 4. Let SM be given by equation (9), then:

i) A Lorenz-improvement (LC1 ≻ LC0) implies SM < 0.

ii) A Lorenz-worsening (LC1 ≺ LC0) implies SM > 0.

Proof: See Appendix.
In other words, in cases of Lorenz-dominance, the sign of SM fully reflects

whether there has been a fall or a rise in inequality judged by the Lorenz-
criterion.

As previously mentioned, when looking at income changes we care not
only about how the anonymous distribution of income evolves, but also about
who moved to a different position across periods. This is reflected by the
transition from sc to s1. In this transition, share changes will be convergent,
since in the reranking of individuals there will always be a positive transfer
of income shares from a relatively richer individual to a poorer one. This is
expressed in the following Lemma.

Lemma 5. For XM given by equation (9), XM ≤ 0.

Proof: See Appendix.
With these two results we can proceed to analyze the connection between

share mobility and changes in inequality as measured by Lorenz comparisons.

Proposition 7. Convergence in Shares and Lorenz Dominance

i) A Lorenz-improvement (LC1 ≻ LC0) implies share convergence (δs < 0).

ii) If when the income vector goes from d0 to d1, the transition involves
no change in positions among panel people, then a Lorenz-worsening
(LC1 ≺ LC0) implies divergence in shares (δs > 0).

iii) If positional changes occur, then a Lorenz-worsening is consistent with
either convergent or divergent share changes.

11This is so because if positions were to remain unchanged, i.e. sc = s1, the entire share
change would be due to a change in the shape of the distribution, sc − s0.
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Proof: See Appendix.
The intuition (and proof) behind this proposition is related to a well-

known result in the inequality literature stating that an equalization in the
Lorenz sense can be achieved by a series of income transfers from richer
to poorer individuals that keep unaltered the individual ranks between the
initial and the final periods (see for instance Fields and Fei, 1978).

These progressive transfers generate by construction convergent share
changes in the transition from s0 to sc (Lemma 4). However, when going
from s0 to s1, we also need to consider the transition from sc to s1. In this
last step the shape of the income distribution remains unchanged and pairs
of individuals swap incomes and therefore positions. As we saw in Lemma
5, this positional rearrangement leads to convergent share-changes always.

Hence, in the case of a Lorenz-improvement, both components go in the
same direction, and share changes are convergent. However, in the case of a
Lorenz-worsening, the two components will move in opposite directions, and
depending on which force is dominant there will be convergence or divergence
in shares as measured by δs in equation (8).

In contrast, if all individuals keep their same rank in the initial and final
distributions (i.e. if there is zero positional mobility), vector sc will equal
the final share vector s1, and the sign of δs is determined exclusively by SM .
Given Lemma 4 and the connection between SM and δs, in the absence of
positional changes, we have that a Lorenz-worsening will lead to divergent
share changes.

In other words, as long as we restrict ourselves to the case of no positional
mobility and no crossings of Lorenz curves, share mobility and changes in
inequality fully align, in the sense that rising inequality as gauged by Lorenz-
worsening only occurs with divergent share-changes and falling inequality as
gauged by Lorenz-improvement only occurs with convergent share-changes.

When share changes are divergent, the income shares of the rich grow
relative to others’ shares (irrespectively of whether there is positional change
or not). This should lead to disequalization. Hence, the only possible way
to register a fall in inequality in this instance is for Lorenz curves to cross.12

We express this as a corollary.

12As is well known, when Lorenz curves cross, a Lorenz-consistent measure can always
be found showing rising inequality and another Lorenz-consistent measure can be found
showing falling inequality.
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Corollary 3. If share changes are non-convergent (δs ≥ 0) then either a
weak Lorenz-worsening has taken place LC0 � LC1, or the Lorenz curves of
incomes in periods 0 and 1 cross.

This corollary is just the contrapositive of Proposition 7.i), hence we omit
its proof.

Proposition 7 and Corollary 3 give the relation between Lorenz-dominance
and share changes, while Table 6 gives the precise conditions under which
each combination of convergent/divergent share changes can occur under
Lorenz-dominance.

3.3.2 Lorenz Dominance and Changes in Dollars

While the previous subsection established a clear connection between change
in inequality as gauged by the Lorenz criterion and share changes, as previ-
ously mentioned, on many occasions our interest is not the changes in shares
but the changes in dollars.

In this section we establish a condition relating changes in inequality
under Lorenz-dominance and a dollar-change regression. In order to derive
such a connection, it is useful to express the dollar-change regression (6) in
its final-on-initial form

d1 = αd + βdd0 + ud (10)

and to recall that in such a case convergence will occur whenever βd < 1
(or equivalently δd < 0). Similarly, we can define a final-on-initial share
regression

s1 = αs + βss0 + us. (11)

Using these regressions we can establish the following result.

Lemma 6. Let µt denote the mean income in period t, βd and βs denote the
convergence coefficients given by regressions (10) and (11) in dollars and in
shares, respectively, and g denote the economy-wide growth rate in incomes
between year 0 and year 1. Then

βd = βs

µ1

µ0
= βs(1 + g).

Proof: See Appendix.
We can now derive a necessary condition relating dollar-changes and

Lorenz Dominance.
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Proposition 8. Convergence in Dollars and Lorenz Dominance
Let δd be defined by the change-on-initial regression (6) when income is mea-
sured in dollars, and let g denote the economy-wide growth rate in incomes
between year 0 and year 1.

i) If g < 0, a Lorenz-improvement (LC1 ≻ LC0) implies convergence in
dollars (δd < 0).

ii) If when the income vector goes from d0 to d1, a) the transition involves
no change in positions among panel people, and b) g ≥ 0, then Lorenz-
worsening (LC1 ≺ LC0) implies divergence in dollars (δd > 0).

iii) A Lorenz-worsening (LC1 ≺ LC0) is compatible with both convergence
and divergence in dollars.

Proof: See Appendix.
As in previous cases, we can express the additional corollary

Corollary 4. When economic growth is negative, if dollar changes are non-
convergent (δd ≥ 0) then either a weak Lorenz-worsening has taken place
LC0 � LC1, or the Lorenz curves of incomes in periods 0 and 1 cross.

Similar to Proposition 5 linking changes in the Gini index and conver-
gence in dollar changes, we only have a relation of necessity between Lorenz-
improvements and dollar changes in the case of negative growth.13 Table 7
contains the precise conditions for each possible cell to arise under different
growth scenarios. A quick comparison reveals that this table bears close re-
semblance to Table 4. We will not repeat the intuition here for each cell.
Instead, we emphasize a new feature that arise in this context.

First, by looking at cell (1,2) in part A, we notice that in order to have
convergent dollar changes and Lorenz-worsening under positive economic
growth, there must be positional changes, and the exchange mobility brought
forth by these changes needs to be sufficiently large, as expressed by the con-
dition |XM | > SM . In contrast, the corresponding cell (1,2) in part B under
economic decline imposes no condition whatsoever on positional change. In

13In spite of not having a relation of necessity between Lorenz-improvements and con-
vergent dollar changes under all growth scenarios, we can establish such a relation if we
measure absolute rather than relative inequality. In particular, we can derive a proposi-
tion similar to Proposition 7 if we use Absolute Lorenz Curves (Moyes, 1999). See online
appendix for further details.
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other words, not only can we have convergent dollar changes together with
Lorenz-worsening, but this can happen even when individuals keep their ini-
tial position. The reason for this is that if economic decline is strong enough,
the dollar losses of the initially rich can be larger than those of the rest of the
population, even when the relative income share of the rich increases. For an
example, refer again to the corresponding cell in our Matrix of Possibilities
(Table 2).

3.3.3 Lorenz Dominance and Proportional Income Changes

In this section we explore the relationship between proportional changes in
income, Lorenz-improvement/worsening, and the change in the variance of
log-dollars.

Log-Income Approximation

The most common way to measure proportional convergence is by approx-
imating proportional changes by changes in log-income and estimating a
double-log regression

∆ ln d = γlog + δlog ln d0 + ulog (12)

or its equivalent final-on-initial form ln d1 = αlog + βlog ln d0 + ulog. Similarly
a common way of determining whether inequality is increasing or decreasing
is to look at the variance of log-incomes.

As we now show, doing things in these ways can be seriously misleading.
Consider the following example:

[1, 1, 1, 1, 1, 1, 1, 1, 6, 9]→ [1, 1, 1, 1, 1, 1, 1, 1, 7, 8].

The richest person (call him Bill Gates) has transferred $1 to the next
richest person (call him Carlos Slim), which is a clear Lorenz-improvement.
Inequality therefore falls by the Lorenz criterion and accordingly for any
Lorenz-consistent inequality measure. However, the variance of log-incomes
is not Lorenz-consistent (Foster and Ok, 1999; Cowell, 2011), and it shows
an increase from 0.716 to 0.721 despite the Lorenz-improvement. Moreover,
a rank-preserving transfer in dollars from the richest person to anyone lower
down in the income distribution should be deemed convergent, as it brings
convergence in dollars (in this case βd = 0.96). However, as this example
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shows, if we regress final log-dollars on initial log-dollars, we obtain βlog =
1.00045 > 1, and hence find divergence in log-dollars. Thus, in this example,
a Lorenz-improvement has taken place and yet the regression of final log-
income on initial log-income registers divergence and the variance of log-
incomes increases (which it must by the Furceri, Wodon-Yitzhaki theorem).
The reader is hereby forewarned to be cautious about using log-incomes and
their variances.

As shown in Table 2, we can find all possible combinations of Lorenz-
worsening/improvement with convergent/divergent log-income changes. In
particular, contrary to the share-change case, we can find examples that
make compatible falling inequality as gauged by a Lorenz-improvement and
divergent log-income changes.

The previous examples illustrate a more general point: that log-incomes
can be divergent if a progressive transfer occurs sufficiently high up in the
income distribution.

More precisely, we can show the following result for a single rank-preserving
transfer that is sufficiently small:

Proposition 9. Log-income Panel Changes and Lorenz Dominance
under a Single Rank-Preserving Transfer Sufficiently High Up in
the Income Distribution

Let gm denote the geometric mean of income at period 0, and exp(1) =
2.718. Consider two individuals i and j such that di0 > dj0 > gm ∗ exp(1).
Let h > 0 be a sufficiently small rank-preserving transfer between i and j.

a) If such a transfer h is equalizing, it produces a Lorenz-improvement LC1 ≻
LC0, rising inequality as gauged by the log-variance (V (ln d1) > V (ln d0)),
and a divergent regression coefficient (δlog > 0).

b) If such a transfer h is disequalizing, it produces a Lorenz-worsening LC1 ≺
LC0, falling inequality as gauged by the log-variance (V (ln d1) < V (ln d0)),
and a convergent regression coefficient (δlog < 0).

Proof: See Appendix.
Proposition 9 suggests why it would be easy to misinterpret a log-change

regression like (12). The log-change regression can indicate divergence as
we define it, even when the income changes lead to a Lorenz-improvement.
Rank-preserving equalizations which occur sufficiently high up in the income
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distribution can lead to divergence in log-dollars. This is an unappealing
property of log-income regressions such as (12).

Exact Proportional Changes

As previously mentioned, one alternative to the log-income changes regression
(12) is to regress the exact proportional change in incomes on initial income
as in equation (5). In this case, we can show the following results linking
inequality changes and exact proportional changes.

Proposition 10. Convergence in Exact Proportional Changes and
Lorenz Dominance

Let θ be defined by the exact proportional change regression (5).

i) A Lorenz-improvement (LC1 ≻ LC0) implies convergence in exact pro-
portional changes (θ < 0).

ii) If when income goes from d0 to d1, the transition involves no change in
positions, then a Lorenz-worsening (LC1 ≺ LC0) implies divergence in
exact proportional changes (θ > 0).

iii) In the presence of positional changes, a Lorenz-worsening (LC1 ≺ LC0)
is compatible with both convergent and divergent exact proportional changes.

Proof: See Appendix.
Also, as in the case of share and dollar changes, we can express part i) of

the proposition as:

Corollary 5. If the exact proportional changes are non-convergent (θ ≥ 0),
then either a weak Lorenz-worsening has taken place (LC0 � LC1), or the
Lorenz curves of incomes in periods 0 and 1 cross.

Furthermore, we can establish precise conditions for each of the possible
combinations between Lorenz-improvement/worsening together with conver-
gent/divergent exact proportional changes. In order to do this it is useful to
define terms for proportional structural mobility and proportional exchange
mobility:

PSM =
1

n

∑

i

sic − si0
si0

PXM =
1

n

∑

i

si1 − sic
si0

.
(13)
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Similar to the analysis of share changes, PSM is a term capturing the av-
erage proportional share changes due to changes in the shape of the income
distribution if positions remain unchanged. In turn, PXM reflects propor-
tional share changes associated with positional rearrangements, under a fixed
marginal distribution. Having defined these terms we present the set of con-
ditions giving all possible combinations in Table 8.

The intuition is the same as before: if income changes are large enough,
and in a suitable pattern, we can have positional changes, rising inequality,
and convergent proportional changes all taking place at the same time.

A comparison of Table 8 with Table 6 shows that share-change and ex-
act proportional change regressions share a similar structure with respect to
Lorenz-dominance (something also apparent from Propositions 7 and 10).
This stands in contrast to the comparison of dollar change and of log-dollar
change regressions.

3.4 Extensions to Cases Involving Lorenz Crossings

As previously noted, all the results in section 3.3 were derived by analyzing
rising or falling inequality as judged by Lorenz-worsenings or improvements.
Of course, it is possible for the Lorenz curves of two distributions to cross,
which often happens in practice.14 How far can we go allowing Lorenz curves
to cross? When the curves cross, going from one distribution to the other
involves some transfers that are equalizing and others that are disequalizing.
Extending our earlier results to these cases is not straightforward. Our results
for specific inequality indices apply, but we would like more general results.

Under certain circumstances we can do so. In particular, we require
certain conditions on the nature of crossings of the Lorenz-curves, and the
coefficients of variation of incomes. For example, if the Lorenz curve for final
income crosses that of initial income once from above, then we have equalizing
transfers toward persons at the low end and disequalizing transfers toward
persons at the high end. For inequality (in a manner to be defined precisely
below) to fall, it must be the case that the equalizing transfers “outweigh”
the disequalizing ones. The condition that gives us this is a falling coefficient
of variation.

We will also follow the literature (Shorrocks and Foster, 1987; Davies and

14See Atkinson (1973, 2008) for a classic discussion of the available evidence on Lorenz-
crossings using real data in a cross-country setting.
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Hoy, 1995) and restrict the class of inequality indices to those which are
“transfer sensitive”.

Definition 6. Transfer-sensitive Inequality Measures (Shorrocks and
Foster, 1987)
An inequality measure I(d) is transfer sensitive (TS) iff I(d0) > I(d1) when-
ever d1 is obtained from d0 by a series of transfers whereby at each stage i)
a progressive transfer occurs at lower income levels, ii) a regressive trans-
fer occurs at higher income levels, iii) ranks remain unchanged, and iv) the
variance of incomes remains unchanged.

Intuitively speaking, a Transfer-sensitive inequality measure is one that
records a fall in inequality whenever there is a progressive transfer at the
lower part of the income distribution in tandem with a regressive transfer
at higher income levels, to the extent that the transfers are comparable in
the sense of unchanged variance of incomes. An alternative way to state
the transfer-sensitivity condition, is to require that the distribution of final
incomes Third-Order stochastically dominate that of initial incomes.15

Transfer-sensitivity allows certain pairs of distributions to be ranked in
the presence of Lorenz-crossings by giving greater weight to transfers that
occur in the lower part of the income distribution. Shorrocks and Foster
(1987) show that the Atkinson family and the Generalized Entropy class
with parameter less than two satisfy the transfer-sensitive property, but the
Gini coefficient does not.

In this paper, we will derive results for the following class of inequality
measures.

Definition 7. ITS Class of Inequality Measures
Let ITS(d) be the class of inequality measures satisfying transfer sensitivity
(TS), the transfer principle (T), scale-independence (S), population-independence
(P), and anonymity (A).

With these definitions, we can now state results relating the ITS class of
inequality indices to the share change and exact proportional change regres-
sions.

15A formal statement together with a careful discussion of the concept is presented in
Shorrocks and Foster (1987).
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3.4.1 Single Lorenz Crossing

We begin by analyzing a single crossing from above as defined next.

Definition 8. Single Lorenz Crossing From Above
Denote by LC(d; p) the Lorenz curve ordinate corresponding to the lowest

100p% of income recipients, for p ∈ [0, 1]. The Lorenz curve for a distribution
d is said to intersect that of d′ once from above iff there exists p∗ ∈ (0, 1)
and intervals P ≡ [0, p∗] and P ′ ≡ [p∗, 1] such that

LC(d; p) ≥ LC(d′; p) ∀p ∈ P and > for some p ∈ P

LC(d; p) ≤ LC(d′; p) ∀p ∈ P ′ and < for some p ∈ P ′.

Intuitively, again, this entails equalizing transfers toward persons at the
low end and disequalizing transfers toward persons at the high end.

Proposition 11. Convergence in Shares and in Exact-Proportional
Changes, Changes in Transfer Sensitive Inequality Indices under
Single Lorenz-Crossing from Above

If the Lorenz curve of d1 intersects that of d0 once from above and CV (d1) ≤
CV (d0), then all measures in the ITS(d) class and the coefficients of the lin-
ear regressions of share changes (δs) and exact proportional changes (θ) are
linked as follows:

i) ITS(d1) < ITS(d0)

ii) δs < 0

iii) θ < 0

Furthermore, if whenever the income vector goes from d0 to d1, the tran-
sition involves no change in positions among panel people, the Lorenz curve
of d0 intersects that of d1 once from above, and CV (d1) ≥ CV (d0), then all
measures in the ITS(d) class and the coefficients of the linear regressions of
share changes and exact proportional changes are linked as follows:

iv) ITS(d1) > ITS(d0)

v) δs > 0

vi) θ > 0
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Proof: See Appendix.
Intuitively, the first half of Proposition 11 states that when the Lorenz

curve of final incomes crosses that of initial incomes from above and the
coefficient of variation falls, then transfer sensitive inequality indices fall, and
share changes and exact proportional changes are convergent. The second
half states that when the Lorenz curve of initial incomes crosses that of final
incomes once from above and the coefficient of variation rises, then transfer
sensitive inequality indices rise, and share changes and proportional changes
are divergent, so long as there are no positional changes.16

To empirically illustrate Proposition 11, consider the transition

d0 = [1, 5, 10, 11] → d1 = [2, 4, 9, 12].

In this case the conditions of the Proposition are satisfied, namely there is:
i) a single-crossing from above in the Lorenz curves, and ii) a falling CV
(from 0.596 to 0.587). In this case it is readily verified that commonly used
indices like the Atkinson family and Generalized Entropy with parameter
< 2 will mark a reduction in inequality, and there is both share and exact
proportional-changes convergence as well. More precisely, the Atkinson index
with parameter 0.5 falls from 0.126 to 0.096 and the Generalized Entropy
index with parameter 1 falls from 0.218 to 0.184. There is share and exact
proportional-change convergence as well: in this situation, δs = −0.046 and
θ = −0.082.

The additional condition involving the coefficient of variation implies
that it will not always be possible to link distributional changes involv-
ing crossing Lorenz-curves with share or exact proportional change conver-
gence/divergence. More specifically, in order to appreciate the importance
of having a falling coefficient of variation in Proposition 11, consider the ex-
ample d0 = [1, 5, 10] → d1 = [2, 4, 25]. In this case the Lorenz curve of d1
crosses that of d0 once from above, yet the coefficient of variation rises from
0.69 to 1, and we cannot appeal to Proposition 11.17

Finally, notice that Proposition 11 and Lemma 6 could be combined to
derive conditions relating changes in Transfer-Sensitive inequality measures
to convergence in dollar changes. This exercise is straightforward, and it is
thus left for the reader.

16As in our previous propositions, rising inequality with positional changes is compatible
with both convergent and divergent changes.

17In fact, our share change and exact proportional change regressions register divergence,
as δs = 0.35 and θ = 0.07.
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3.4.2 Multiple Lorenz Crossings

The result derived in Section 3.4.1 can be straightforwardly generalized to
the case of multiple Lorenz crossings. In particular, following Davies and
Hoy (1995) we define multiple crossings of Lorenz curves next.

Definition 9. Multiple Lorenz Crossings
The Lorenz curve for one distribution d is said to intersect that of another

distribution d′ n times (and initially from above) iff there exists a series of
points Pi, with P0 ≡ 0, Pn+1 ≡ 1, and P0 < P1 < . . . < Pn < Pn+1 such that
for i odd:

i) LC(d;P ) ≥ LC(d′;P ) ∀P ∈ [Pi−1, Pi]

and ∃ǫ > 0 such that the inequality is strict ∀P ∈ (Pi − ǫ, Pi).

ii) LC(d;P ) ≤ LC(d′;P ) ∀P ∈ [Pi, Pi+1]

and the inequality is strict for some P ∈ [Pi, Pi+1].

For i even, switch d and d′ in i) and ii).

With this definition we can now state the generalization of Proposition
11 to the case when there are multiple crossings of two Lorenz curves.

Proposition 12. Convergence in Shares and in Exact-Proportional
Changes, Changes in Transfer Sensitive Inequality Indices under
Multiple Lorenz-Crossings

If the Lorenz curve of d1 intersects that of d0 at least once and initially
from above and CVi(d1) ≤ CVi(d0) ∀i = 1, 2, . . . , n+ 1, where Pi denotes the
population shares (as in Definition 9) and CVi(·) denotes the coefficient of
variation within the subpopulation defined by P ∈ [0, Pi], then all measures in
the ITS(d) class and the coefficients of the linear regressions of share changes
(δs) and exact proportional changes (θ) are linked as follows:

i) ITS(d1) < ITS(d0)

ii) δs < 0

iii) θ < 0.
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Furthermore, if whenever the income vector goes from d0 to d1, the transi-
tion involves no change in positions among panel people, the Lorenz curve of
d0 intersects that of d1 at least once and initially from above, and CVi(d1) ≥
CVi(d0) ∀i = 1, 2, . . . , n+ 1, for CVi defined above, then all measures in the
ITS(d) class and the coefficients of the linear regressions of share changes
and exact proportional changes are linked as follows:

iv) ITS(d1) < ITS(d0)

v) δs > 0

vi) θ > 0

Proof: See Appendix.18

This concludes our derivation of results. We turn now to a summary of
the results and a concluding discussion.

4 Summary of Results and Concluding Ob-

servations

This paper has explored mathematically the relationship between changing
relative income inequality in the cross section and panel income changes. All
four combinations - rising inequality and convergent panel income changes,
rising inequality and divergent panel income changes, falling inequality and
convergent panel income changes, and falling inequality and divergent panel
income changes - have been shown possible (Tables 1 and 2). The sources
of results and conditions for each combination of rising or falling income
inequality, convergent or divergent panel income changes, and positive or
negative economic growth, have been derived in Section 3.

Four observations about the results are particularly trenchant.
First, all 32 cells in Table 2 are possible, provided inequality is suitably

measured. But not all are possible measuring inequality change by comparing
Lorenz curves.

Second, a large number of results are derived measuring inequality change
by Lorenz-improvements and Lorenz-worsenings, which are particularly pow-
erful criteria for making inequality comparisons. Thus, all who agree on the

18As in our previous propositions, rising inequality with positional changes is compatible
with both convergent and divergent changes.
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desirability of using Lorenz criteria for making inequality comparisons would
feel confident that the various combinations involve “good” ways of measur-
ing inequality.

Third, some of the results require Lorenz crossings or hold for a carefully
chosen inequality index but not for all Lorenz-consistent indices. Conse-
quently, these results are weaker than those based on Lorenz-dominance.

And fourth, some combinations are impossible, but there are only a few of
them. One impossibility is the one previously proved by Furceri (2005) and
Wodon and Yitzhaki (2006), namely that it is impossible to have divergent
log-dollar changes and falling relative inequality as measured by the variance
of logs. However, it is possible to have divergent log-dollar changes and a
Lorenz-improvement, hence falling inequality as measured by any Lorenz-
consistent index. The Furceri-Wodon-Yitzhaki impossibility result is due to
the authors’ use of an inequality index which is not Lorenz-consistent.

The other impossibilities are ones which we have proven here and were
not previously in the literature. The various possibilities and impossibilities
have been stated in Propositions 1 - 12, their Corollaries, and Tables 3 -8.
The impossibilities arise when relative inequality falls according to a carefully
chosen measure and when panel income changes are divergent in particular
ways. Otherwise, we have proven that every other combination of rising or
falling income inequality, divergent or convergent panel income changes, and
economic growth or decline is possible, and we have displayed the conditions
under which each arises.

To conclude let us return to where we started; namely with the reconcili-
ation between i) convergent panel income changes and rising inequality, and
between ii) divergent panel income changes and falling inequality.

The reason that convergent panel income changes can occur in spite of
rising inequality, is that panel income changes can be large enough such
that some initially low-earners become high earners in a widening distribu-
tion. In fact, it is precisely because panel studies abandon the property of
single-period anonymity and replace it by two-period anonymity, that such
a pattern can be identified. In particular, our paper shows how it is possible
to have convergent dollar changes, together with rising relative inequality
measures, in times of economic growth- a combination that is often observed
in empirical data.

In addition, the coexistence of divergent panel income changes and falling
inequality depends crucially on the way inequality and divergence are mea-
sured. In particular, we show that dollar changes can be divergent in con-
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junction with falling relative inequality measures if economy-wide income
growth is positive and large enough. The reason for this is that a regres-
sion of dollar change on initial dollars is affected by proportional increases in
income, while relative inequality measures are not.

The other instance where we can have divergence together with Lorenz-
improvements occurs for regressions in log-dollars. More specifically, we
showed that equalizing transfers that occur sufficiently high up in the in-
come distribution will lead to a reduction in inequality by any measure that
satisfies the transfer principle, yet the log-dollar regression will register di-
vergence.

The results derived in this paper open up additional questions as to the
empirical nature of individual income changes. For instance, when rising
inequality is observed together with convergent panel income changes in em-
pirical work, is this finding driven by a few individuals experiencing large
changes, by many individuals experiencing moderate changes, or are both
important? Exploring the precise way in which these large individual changes
occur is an important question for future research.
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Tables

Table 1: Possibilities for Rising/Falling Inequality and

Convergent/Divergent Panel Income Changes
Falling Inequality Rising Inequality

Convergent
Panel X X

Income
Changes
Divergent
Panel X X

Income
Changes

X: This cell is possible both in times of economic growth

and in times of economic decline.
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Table 2: Matrix of Possibilities in Times of Economic Growth and Decline.
Final on Initial Regression: y1 = αy + βyy0 + uy

Changes Regression: ∆y1 = γy + δyy0 + uy

Proportional Changes Regression: d1−d0
d0

= φ+ θd0 + upch

Economic Growth Positive Economic Growth Negative

Falling Rising Falling Rising
Relative Relative Relative Relative
Inequality Inequality Inequality Inequality

C
o
n
v
e
r
g
e
n
c
e
/
d
iv
e
r
g
e
n
c
e

Convergent
Share changes [5,20]→[10,20]LD [5,20]→[25,5]LD [5,25]→[5,20]LD [7,23]→[20,5]LD

(βs < 1 ⇐⇒ δs < 0)

Dollar changes [5,20]→[10,20]LD [5,20]→[25,5]LD [5,25]→[5,20]LD [7,23]→[5,20]LD

(βd < 1 ⇐⇒ δd < 0)

Proportional changes
Log-dollar Approx. [5,20]→[10,20]LD [1,1,1,1,1,1,1,1,6.1,8.89]→ [5,25]→[5,20]LD [1.1,407,418]→

(βlog < 1 ⇐⇒ δlog < 0) [1,1,1,1,1,1,1,1,6,9]LD [1,360,390]LD

Exact Prop. changes [5,20]→[10,20]LD [5,20]→[25,5]LD [5,25]→[5,20]LD [7,23]→[20,5]LD

(θ < 0)
Divergent

Share changes [1,5,10]→ [5,20]→[5,25]LD [60,320,1000]→ [10,20]→[5,20]LD

(βs > 1 ⇐⇒ δs > 0) [2,4,25]∗ [54,150,876]∗

Dollar changes [5,20]→[7,23]LD [5,20]→[5,25]LD [20,90,180]→ [10,20]→[5,20]LD

(βd > 1 ⇐⇒ δd > 0) [20,61,180]∗

Proportional changes
Log-dollar Approx. [1,360,390]→ [5,20]→[5,25]LD [1,1,1,1,1,1,1,1,6,9]→ [10,20]→[5,20]LD

(βlog > 1 ⇐⇒ δlog > 0) [1.1,407,418]LD [1,1,1,1,1,1,1,1,6.1,8.89]LD

Exact Prop. changes [1,5,10]→ [5,20]→[5,25]LD [60,320,1000]→ [10,20]→[5,20]LD

(θ > 0) [2,4,25]∗ [54,150,876]∗

Notes: LD: Lorenz-Dominance
*: Possible when measure changing inequality by income share of the poorest tercile, because Lorenz curves cross. Lorenz-dominance is
not possible in this cell.
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Table 3: Conditions for Convergent/Divergent Income
Changes and Falling/Rising Variances

Falling Variance Rising Variance
Convergent V (∆y) < 2|cov(∆y, y0)|

Panel and 0 < ∆V (y) < V (∆y)
Income cov(∆y, y0) < 0
Changes
Divergent
Panel Impossible ∆V (y) > V (∆y)
Income
Changes

For y = f(d), and f(·) any monotonically
increasing function of income in dollars.
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Table 4: Conditions for Convergent/Divergent Dollar

Changes and Falling/Rising Coefficient of Variation in
Times of Growth and Decline

A: Economic Growth (g > 0)
Falling CV Rising CV

Convergent ρd(1 + g) < CV0

CV1

ρd(1 + g) < CV0

CV1

< 1and
Dollar Changes CV1 < CV0

Divergent
ρd(1 + g) > CV0

CV1

> 1
ρd(1 + g) > CV0

CV1

and
Dollar Changes CV0 < CV1

B: Economic Decline (g < 0)
Falling CV Rising CV

Convergent
ρd(1 + g) < 1 < CV0

CV1

ρd(1 + g) < CV0

CV1

< 1
Dollar Changes

Divergent
Impossible 1 > ρd(1 + g) > CV0

CV1Dollar Changes
Where ρd is the correlation coefficient between initial and
final dollars, CVt is the coefficient of variation of incomes
in dollars in period t, and g is the average rate of
growth in the economy.
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Table 5: Conditions for Convergent/Divergent Share
Changes and Gini Changes

Falling Gini Rising Gini
Convergent E(s1∆r) < |cov(∆s, r0)| E(s1∆r) > |cov(∆s, r0)|

Share and and
Changes cov(∆s, r0) < 0 cov(∆s, r0) < 0
Divergent
Share Impossible ∆G > 2E(s1∆r)

Changes
G: Gini index, r0: rank when distribution is sorted
according to initial-period income.
st: income shares in period t.
Share convergence/divergence is gauged through
a regression of share changes on initial ranks (4).

Table 6: Conditions for Convergent/Divergent Share
Changes under Lorenz Dominance

Lorenz-Improvement Lorenz-Worsening
Convergent

SM < 0 |XM | > SM > 0
Share Changes

Divergent
Impossible SM > |XM | ≥ 0

Share Changes
SM: Structural Mobility. XM: Exchange Mobility.
For definitions see equation (9).
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Table 7: Conditions for Convergent/Divergent Dollar
Changes under Lorenz Dominance in Times of Growth

and Decline
A: Economic Growth (g > 0)
Lorenz-Improvement Lorenz-Worsening

Convergent SM < 0 |XM | > SM > 0
Dollar and and
Changes βs(1 + g) < 1 βs(1 + g) < 1
Divergent SM < 0 SM > 0
Dollar and and
Changes 1 < βs(1 + g) 1 < βs(1 + g)

B: Economic Decline (g < 0)
Lorenz-Improvement Lorenz-Worsening

Convergent SM > 0
Dollar SM < 0 and
Changes βs(1 + g) < 1
Divergent SM > |XM | ≥ 0
Dollar Impossible and
Changes 1 < βs(1 + g)

SM: Structural Mobility. XM: Exchange Mobility.
For definitions see equation (9).
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Table 8: Conditions for Convergent/Divergent Exact
Proportional Changes under Lorenz Dominance

Lorenz-Improvement Lorenz-Worsening
Convergent Exact

PSM > 0
PXM > |PSM | > 0

Proportional Changes and PSM < 0
Divergent Exact

Impossible
|PSM | > PXM ≥ 0

Proportional Changes and PSM < 0
PSM: Proportional Structural Mobility.
PXM: Proportional Exchange Mobility.
For definitions see equation (13).
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Appendix

Proofs of Propositions

In what follows, we will assume a finite population. In this way, integrals
can be replaced by sums and the proofs will therefore be easier to follow.

Proposition 1. Convergence and Changes in Variance for the Class
of Monotonic Transformations of Income in Dollars.
Let f(d) be any monotonically increasing function of income in dollars and
denote the value of this function by y. Consider the change-on-initial regres-
sion (3.2). Then:

i) If ∆V (y) < 0, then δy < 0, i.e., the changes in generic income are
convergent.

ii) If ∆V (y) ≥ 0, the changes in y can be either convergent or divergent.

Proof of Proposition 1. First express the regression (3.2) in its final-on-
initial form (3.1)

y1 = αy + (δy + 1)y0 + uy. (3.1)

Take the variance of both sides

V (y1) = (δy + 1)2V (y0) + V (uy),

since cov(y0, uy) = 0 because (3.1) is a linear projection.
Note we can rewrite the change in variances of y as

∆V (y) = V (y1)− V (y0) = δy(δy + 2)V (y0) + V (uy).

If the left-hand side of the equation is negative then it must be the case
that −2 < δy < 0. This proves part i).

Part ii) also follows immediately from this last equation. As a form of
illustration, the transition

[1, 3] → [5, 1]

is an example of rising variance and convergent dollar changes, i.e. δd > 0.
In contrast, the transition

[1, 3] → [1, 5]

is an example rising variance and divergent dollar changes, i.e. δd > 0.
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Lemma 1. Variance of Shares and Coefficient of Variation
Let CV (d) denote the coefficient of variation of income, then

CV 2(d) = V (s).

Proof of Lemma 1.

V (s) = V

(

d

µ

)

=
1

µ2
V (d) = CV 2(d).

Proposition 2. Convergence in Dollars, Changes in the Coefficient
of Variation, and Economic Growth.

Let βd be defined by the final-on-initial regression (3.1) when income is
measured in dollars, and denote the correlation coefficient from this regression
by ρd. Let CV (dt) denote the coefficient of variation of income at period t,
and let g denote the economy-wide growth rate in incomes between year 0 and
year 1. Then there is divergence/convergence in dollars as follows:

βd ≷ 1 (i.e. δd ≷ 0) ⇐⇒ ρd
CV (d1)

CV (d0)
(1 + g) ≷ 1. (7)

Proof of Proposition 2. By definition

ρd =
cov(d1, d0)

√

V (d1)
√

V (d0)

and

βd = ρd

√

V (d1)
√

V (d0)
.

However,

√

V (d1)
√

V (d0)
=

√

V (d1)/µ1
√

V (d0)/µ0

µ1

µ0

=
CV (d1)

CV (d0)

µ1

µ0
.
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Moreover,
µ1 = (1 + g)µ0

where g is the economy-wide income growth rate. Combining these equations
together we obtain equation (7).

Lemma 2. Share Changes and Exact Proportional Changes
Let θ be the slope of the exact proportional change regression (5) then:

sign(θ) = −sign

(

E

[

s1 − s0
s0

])

.

Proof of Lemma 2. First, rewrite the proportional change regression (5)
as

d1
d0

= (φ+ 1) + θd0 + upch.

Then the sign of θ will depend on the sign of the covariance

cov

(

d1
d0

, d0

)

= E

(

d1
d0

d0

)

−E

(

d1
d0

)

µ0

= µ1 − E

(

d1
d0

)

µ0.

Hence, there will be divergence (i.e. θ > 0) whenever µ1 > E(d1
d0
)µ0,

convergence (i.e. θ < 0) whenever µ1 < E(d1
d0
)µ0, otherwise the profiles will

be parallel.
This condition for convergence can be re-expressed as

E

(

d1
d0

)

µ0 − µ1 > 0

E

(

d1
d0

)

µ0

µ1
− 1 > 0

E

(

s1
s0

)

− 1 > 0

So we can express these conditions as:
Convergence (θ < 0) ⇐⇒ 0 < E[ s1−s0

s0
]

Divergence (θ > 0) ⇐⇒ 0 > E[ s1−s0
s0

]

Parallel Profiles (θ = 0) ⇐⇒ 0 = E[ s1−s0
s0

]
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Lemma 3. Properties of Quadrant-Dependent Variables
Let (X, Y ) be a bivariate random variable. Let f(X) be a strictly mono-

tonically increasing function of X. Similarly, let g(X) be a strictly mono-
tonically decreasing function of X. If (X, Y ) is quadrant-dependent, then

i) sign(cov(X, Y )) = sign(cov(f(X), Y )

ii) sign(cov(X, Y )) = −sign(cov(g(X), Y )

provided the covariances exist.

Proof. Proof of Lemma 3
Let X and Y have marginal cdf’s Fx(x) and Fy(y), respectively, and

joint bivariate cdf H(x, y). Denote by Hf(fx, y) the joint bivariate cdf of
(f(X), Y ), i.e.,

Hf(fx, y) = P (f(X) ≤ fx, Y ≤ y).

Also let Ff(fx) be the marginal cdf of f(X). Define in a similar manner
Hg(gx, y) and Fg(gx), for (g(X), Y ).

Finally, let f−1(·) and g−1(·) be the inverse of f(X) and g(X), respec-
tively.

Let us first establish the following results:

a) If (X, Y ) is positively (negatively) quadrant-dependent, then (f(X), Y )
is positively (negatively) quadrant-dependent.

b) If (X, Y ) is positively (negatively) quadrant-dependent, then (g(X), Y ) is
negatively (positively) quadrant-dependent.

To establish a) notice that positive quadrant-dependence of (X, Y ) implies

H(f−1(fx), y) ≥ Fx(f
−1(fx))Fy(y) ∀f−1(fx), y,

yet,

Fx(f
−1(fx)) = P (X ≤ f−1(fx)) = P (f(X) ≤ fx) = Ff(fx),

H(f−1(fx), y) = P (X ≤ f−1(fx), Y ≤ y) = P (f(X) ≤ fx, Y ≤ y) = Hf(fx, y).

Hence, positive quadrant-dependence of (X, Y ) implies

Hf(fx, y) ≥ Ff (fx)Fy(y) ∀fx, y,
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i.e. positive quadrant-dependence of (f(X), Y ). A similar argument estab-
lishes the negatively quadrant-dependence case.

To establish b) notice that for a strictly monotonically decreasing trans-
formation g(X),

P (X ≥ g−1(gx)) = P (g(X) ≤ gx) = Fg(gx)

P (X ≥ g−1(gx), Y ≤ y) = P (g(X) ≤ gx, Y ≤ y) = Hg(gx, y).

By Lemma 1(v)(2.1”) in Lehmann (1966), we know that

P (X ≥ g−1(gx), Y ≤ y) ≤ P (X ≥ g−1(gx))P (Y ≤ y) ∀g−1(gx), y,

is equivalent to positive quadrant-dependence of (X, Y ). Hence, positive
quadrant-dependence of (X, Y ) implies

Hg(gx, y) ≤ Fg(gx)Fy(y),

i.e., negative quadrant-dependence of (g(X), Y ).
A similar argument establishes that negative quadrant-dependence of

(X, Y ) implies positive quadrant-dependence of (g(X), Y ).
Furthermore, recall a useful result by Hoeffding (1940, 1994), which es-

tablishes that for two random variables (X, Y ),

cov(X, Y ) =

∫

IR2

(H(x, y)− Fx(x)Fy(y))dxdy,

provided E(|XY |), E(|X|), and E(|Y |) are all finite.
This result implies that positive quadrant-dependence between any two

variables (X, Y ) implies cov(X, Y ) ≥ 0. Similarly, negative quadrant-dependence
between (X, Y ) implies cov(X, Y ) ≤ 0, provided the covariances exist.

Applying these results to the case a) above means that if (X, Y ) is posi-
tively quadrant-dependent then both cov(X, Y ) ≥ 0 and cov(f(X), Y ) ≥ 0,
and if (X, Y ) is negatively quadrant-dependent then both cov(X, Y ) ≤ 0 and
cov(f(X), Y ) ≤ 0, provided the covariances exist.

Similarly, for the case b), if (X, Y ) is positively quadrant-dependent then
both cov(X, Y ) ≥ 0 and cov(g(X), Y ) ≤ 0, and if (X, Y ) is negatively
quadrant-dependent then both cov(X, Y ) ≤ 0 and cov(g(X), Y ) ≥ 0, pro-
vided the covariances exist.

It only remains to establish that

cov(X, Y ) = 0 ⇐⇒ cov(f(X), Y ) = 0 ⇐⇒ cov(g(X), Y ) = 0
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However, Lemma 3 in Lehmann (1966) shows that under quadrant-dependence
cov(X, Y ) = 0 if and only if X and Y are independent. Yet, if X and Y are
independent, so are f(X) and Y , and g(X) and Y .

This establishes the last equivalences and proves the Lemma.

Proposition 3. Convergence in Exact Proportional Changes and
Changes in the Coefficient of Variation

Let θ be defined by the exact proportional change regression (5). Assume
that the bivariate random variable (s0,∆s) is quadrant-dependent. Then:

i) If ∆CV (d) < 0, then θ < 0, i.e., the exact proportional changes are
convergent.

ii) If ∆CV (d) ≥ 0, the exact proportional changes can be either convergent
or divergent.

Proof of Proposition 3. From Proposition 1 and Lemma 1 for the case
of shares, it follows that

∆CV (d) < 0 ⇒ cov(∆s, s0) < 0.

Since 1/s0 is strictly decreasing in s0, by Lemma 3.ii), under quadrant-
dependence of (s0,∆s), cov(∆s, s0) and cov(∆s, 1/s0) have opposite signs,
namely

cov(∆s, 1/s0) > 0,

provided the covariances exist.
However, 0 < cov(∆s, 1/s0) implies

0 < E

[

s1 − s0
s0

]

since E(∆s) = 0.
Finally, from Lemma 2 it follows that:

0 < E

[

s1 − s0
s0

]

⇐⇒ θ < 0.

In other words, under the stated assumptions δs and θ share the same
sign. This proves part i).
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To establish part ii) notice that a non-decreasing coefficient of variation,
∆CV (d) ≥ 0, implies a non-decreasing variance of shares, ∆V (s) ≥ 0, by
Lemma 1. However, recall from our proof of Proposition 1 that

∆V (s) = δs(δs + 2)V (s0) + V (us).

For δs ≥ 0, ∆V (s) ≥ 0 automatically. Nevertheless, for certain negative
values of δs it will still be the case ∆V (s) ≥ 0. Since under the stated
assumptions δs and θ share the same sign, this means that a non-decreasing
coefficient of variation is compatible with either convergence or divergence
in exact proportional changes.

As a form of illustration, the transition

[1, 3] → [5, 1]

is an example of a rising coefficient of variation, and convergent exact pro-
portional changes, i.e. θ < 0. While the transition

[1, 3] → [1, 5]

is an example of a rising coefficient of variation, and divergent exact propor-
tional changes, i.e. θ > 0.

Proposition 4. Share-on-Ranks Convergence and Changes in the
Gini

Let Gt be the Gini index for dollars in period t, and let λ be given by
equation (4). Then:

i) If ∆G < 0, then λ < 0, i.e., the share-on-rank changes are convergent.

ii) If when the income vector goes from d0 to d1, the transition involves no
change in positions among panel people, then ∆G > 0 implies λ > 0.

iii) If positional changes occur, then a rising Gini may be consistent with
either convergent or divergent share-on-rank changes as measured by λ.
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Proof of Proposition 4. We can express the Gini index at time t as

Gt = −
n + 1

n
+

2

n

n
∑

i=1

ritsit.

Hence, the change in Ginis can be expressed as

G1 −G0 =
2

n

n
∑

i=1

(ri1si1 − ri0si0)

=
2

n

n
∑

i=1

(ri1si1 − ri0si1 + ri0si1 − ri0si0)

=
2

n

n
∑

i=1

[(ri1 − ri0)si1 + ri0(si1 − si0)].

In other words we arrive at the following decomposition

G1 −G0 =
2

n

n
∑

i=1

(si1∆ri + ri0∆si). (A.1)

First note that the term

2

n

n
∑

i=1

si1∆ri

in (A.1) is always non-negative. The reason for this is that for any upward
rank change there will be one or more downward rank changes such that the
overall sum of the upward and downward rank changes is zero. The upward
rank change is multiplied by a larger final income share than are the down-
ward rank changes. This is true for all upward rank changes, individually
and together. Therefore the sum

n
∑

i=1

si1∆ri

is always non-negative.
Hence if ∆G < 0, it must be that the second term

2

n

n
∑

i=1

ri0∆si
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is negative.
This term however, is a (rescaled) covariance between share changes and

initial ranks. In particular,

cov(∆s, r0) = E(r0∆s)−E(r0)E(∆s)

= E(r0∆s)

asE(∆s) = 0, by construction. If this term is negative (as it is when ∆G < 0)
then λ < 0, since by definition

λ =
cov(∆s, r0)

V (r0)
.

This proves part i).
To prove part ii) notice that in the absence of positional changes the first

term of the decomposition (A.1) is zero. Therefore, the sign of ∆G fully
aligns with the one of cov(∆s, r0), and by implication with that of λ.

Finally to prove iii) notice that by virtue of the decomposition (A.1), in
the case with positional changes, the sign of ∆G is determined by the sum of
a term that is strictly positive (i.e. E(s1∆r)) and another one (cov(∆s, r0))
that can be either positive or negative. If the Gini index is rising, then
the RHS of (A.1) is positive and there are no restrictions on the sign of
cov(∆s, r0), and hence of λ.

As a form of illustration, the transition

[1, 3] → [5, 1]

is an example of a rising Gini index, and convergent share-on-rank changes,
i.e. λ < 0. While the transition

[1, 3] → [1, 5]

is an example of a rising Gini index, and divergent share-on-rank changes,
i.e. λ > 0.

Proposition 5. Convergence in Dollars, Changes in the Gini, and
Economic Growth

Let δd be defined by the regression of change in dollars on initial dollars
(6), and let g denote the economy-wide growth rate in incomes between year 0
and year 1. Assume that the bivariate random variable, (r0,∆s) is quadrant-
dependent. Then:
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i) If ∆G < 0 and g < 0, then δd < 0, i.e., the dollar changes are conver-
gent.

ii) If when the income vector goes from d0 to d1, a) the transition involves
no change in positions among panel people, and b) g ≥ 0, then ∆G > 0
implies δd > 0.

iii) If positional changes occur, then a rising Gini may be consistent with
either convergent or divergent dollar changes as measured by δd.

Proof of Proposition 5. Notice first that using the identity

µ1∆s = ∆d − gd0,

we can re-express the covariance cov(∆s, d0) as:

cov(∆s, d0) = E(d0∆s)−E(∆s)E(d0)

= E(d0∆s)

= µ−1
1 E[d0(∆d− gd0)]

= µ−1
1 [E(d0∆d)− gE(d20)].

Furthermore, we can write cov(∆d, d0) as

cov(∆d, d0) = E(d0∆d)−E(∆d)E(d0)

= E(d0∆d)− gµ2
0

= E(d0∆d)− gE(d20) + gE(d20)− gµ2
0

= [E(d0∆d)− gE(d20)] + gV (d0).

Proof of part i):
From Proposition 4 we know that a falling Gini implies λ < 0, therefore

cov(∆s, r0) < 0.

The transformation from initial ranks r0 to initial dollars d0 is strictly in-
creasing, so by Lemma 3.i), under quadrant-dependence of (r0,∆s), cov(∆s, r0)
and cov(∆s, d0) share the same sign, namely

cov(∆s, d0) < 0

provided the covariances exist.
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This, in turn implies that the term E(d0∆d) − gE(d20) will be negative.
If in addition, g < 0, then we ensure cov(∆d, d0) < 0 and so there will be
convergence in dollars, i.e. δd < 0.

Proof of part ii):
From Proposition 4.ii), if the transition from d0 to d1 involves no change

in positions among panel people, then ∆G > 0 implies cov(∆s, r0) > 0.
However, as previously noted, under the stated assumptions cov(∆s, r0) > 0
implies cov(∆s, d0) > 0, and hence E(d0∆d) − gE(d20) will be positive. If
in addition, g ≥ 0, then we ensure cov(∆d, d0) > 0 and so there will be
divergence in dollars, i.e. δd > 0.

Part iii) follows from the fact that if ∆G > 0 then by Proposition 4.iii),
cov(∆s, r0) can be either positive or negative, and by the above argument
so will the term E(d0∆d) − gE(d20). Therefore, the sign of cov(∆d, d0) > 0
can also be positive or negative depending on the signs and magnitudes of
E(d0∆d)− gE(d20) and gV (d0).

As a form of illustration, the transition

[1, 3] → [5, 1]

is an example of positional changes, a rising Gini index, and convergent dollar
changes, i.e. δd < 0. In contrast, the transition

[5, 10, 15] → [8, 7, 85]

is an example of positional changes, a rising Gini index, and divergent dollar
changes, i.e. δd > 0.

Proposition 6. Convergence in Exact Proportional Changes and
Changes in the Gini

Let θ be defined by the exact proportional change regression (5). Assume
that the bivariate variables (r0,∆s) are quadrant-dependent. Then:

i) If ∆G < 0, then θ < 0, i.e., the exact proportional changes are conver-
gent.

ii) If when the income vector goes from d0 to d1, the transition involves no
change in positions among panel people, then ∆G > 0 implies θ > 0.
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iii) If positional changes occur, then a rising Gini may be consistent with
either convergent or divergent exact proportional changes as measured
by θ.

Proof of Proposition 6. Whenever ∆G < 0 then cov(∆s, r0) < 0 by
Proposition 4.i).

Since 1/s0 is strictly decreasing in r0, by Lemma 3.ii), under quadrant-
dependence of (r0,∆s), cov(∆s, r0) and cov(∆s, 1/s0) have opposite signs,
namely

cov(∆s, 1/s0) > 0,

provided the covariances exist.
However, 0 < cov(∆s, 1/s0) implies

0 < E

[

s1 − s0
s0

]

since E(∆s) = 0.
Finally, from Lemma 2 it follows that:

0 < E

[

s1 − s0
s0

]

⇐⇒ θ < 0.

In other words, under the stated assumptions λ and θ share the same
sign. This proves part i).

From Proposition 4.ii), if the transition from d0 to d1 involves no change
in positions among panel people, then ∆G > 0 implies cov(∆s, r0) > 0.
However, as previously noted, under the stated assumptions cov(∆s, r0) >
0 implies cov(∆s, 1/s0) < 0, provided the covariances exist. By a similar
argument to the above outlined, this implies θ > 0. This establishes part ii).

Part iii) can be proven by example. In particular, consider the transition

[2, 4, 6] → [85, 8, 7]

is an example of positional changes, a rising Gini index, and convergent exact
proportional changes, i.e. θ < 0. In contrast, the transition

[2, 4, 6] → [8, 7, 85]

is an example of positional changes, a rising Gini index, and divergent exact
proportional changes, i.e. θ > 0.
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Lemma 4. Let SM be given by equation (9),

SM =

∑

i(sic − si0)si0
n

,

then:

i) A Lorenz-improvement (LC1 ≻ LC0) implies SM < 0.

ii) A Lorenz-worsening (LC1 ≺ LC0) implies SM > 0.

Proof of Lemma 4. Proof of part ii)
Let s0 be the initial vector of shares and let sc be defined as in (1).
Theorem 2.1 in Fields and Fei (1978) implies that if the distribution of

s0 Lorenz-dominates that of sc, i.e. if LC0 ≻ LCc, then it is possible to go
from s0 to sc by means of a series of rank-preserving disequalizing transfers.

One convenient way of representing such transfers is by indexing them
as h(i, j) where the first argument, i, indicates which individual is making a
transfer and the second one, j, which one is receiving it.

Since the transfers are disequalizing, and no one makes a transfer to
himself, they satisfy the conditions:

h(i, j) = 0 for di0 ≥ dj0

h(i, j) ≥ 0 for di0 < dj0 with strict inequality for some pair {i,j}.

The total transfers made by individual i will be the sum over the second
index j, namely

h(i, ·) =
n
∑

j=1

h(i, j).

Similarly, the total transfers received by this same individual will be the
sum over the first index, namely

h(·, i) =

n
∑

j=1

h(j, i).

Hence, the change in this person’s income share can be expressed as the
difference between the two previous quantities, i.e.

sic − si0 = h(·, i)− h(i, ·) =

n
∑

j=1

h(j, i)−

n
∑

j=1

h(i, j).
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By construction, the sum of the share changes over all individuals is zero,
hence each person’s share loss is somebody else’s share gain, and also each
share gain is somebody else’s loss. In other words, the transfers h(i, j) appear
with a positive sign in the share change of individual j, and with a negative
sign in the share change of individual i. Furthermore, the sender i is always
poorer than the receiver j, since the transfer is disequalizing. Hence, for each
transfer h(i, j) we have

h(i, j)(sj0 − si0) ≥ 0.

Hence, SM can be rewritten as

SM = n−1
∑

i

(sic − si0)si0

= n−1
∑

i

(

n
∑

j=1

h(j, i)−

n
∑

j=1

h(i, j)

)

si0.

That is, SM will be the average of terms h(i, j)(sj0 − si0) for all the
transfers h(i, j). Since these terms are non-negative, and some will be strictly
positive, then SM will be positive.

In other words, we have shown that LC0 ≻ LCc implies SM > 0. How-
ever, by construction, the Lorenz curve of the vector sc is the same as that
of the final income vector s1 (i.e. LCc = LC1), so we have that a Lorenz-
worsening LC0 ≻ LC1 implies SM > 0.

The proof of part i) follows by reproducing the previous steps, now with
rank-preserving equalizing transfers.

Lemma 5. For XM given by equation (9),

XM =

∑

i(si1 − sic)si0
n

,

XM ≤ 0.

Proof of Lemma 5. Recall sc is a permutation of s1. Since both vectors
have the same elements, the only changes are the ones due to positional
changes. If nobody changes positions sc = s1, and XM = 0, trivially.
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Otherwise, any positional swap will imply the transfer of resources g(l, k)
from individual l to individual k where l is initially richer than k, i.e. dl0 >
dk0. Moving from sc to s1 will imply a series of such positional swaps.

The total transfers made by individual i when going from sc to s1 will be
the sum

g(i, ·) =

n
∑

j=1

g(i, j),

while the total transfers received by this same individual during this transi-
tion will be the sum

g(·, i) =
n
∑

j=1

g(j, i).

The change in this person’s income share from such transfers can be then
expressed as

si1 − sic = g(·, i)− g(i, ·) =

n
∑

j=1

g(j, i)−

n
∑

j=1

g(i, j).

Each transfer g(l, k) appears once with a positive sign and once with a
negative sign. Furthermore, as we established before, in both cases the sender
is always richer than the receiver, i.e. dk0 < dl0. Hence, for each transfer
g(l, k) we have that the product

g(l, k)(sk0 − sl0)

is negative. Hence, the term

XM = n−1
∑

i

(si1 − sic)si0 = n−1
∑

i

(

n
∑

j=1

g(j, i)−
n
∑

j=1

g(i, j)

)

si0

will be the average of terms g(l, k)(sk0−sl0) for all transfers g(l, k). Since all
these terms are non-positive, and some will be strictly negative, then XM
will be negative as well.
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Proposition 7. Convergence in Shares and Lorenz Dominance

i) A Lorenz-improvement (LC1 ≻ LC0) implies share convergence (δs < 0).

ii) If when the income vector goes from d0 to d1, the transition involves
no change in positions among panel people, then a Lorenz-worsening
(LC1 ≺ LC0) implies divergence in shares (δs > 0).

iii) If positional changes occur, then a Lorenz-worsening is consistent with
either convergent or divergent share changes.

Proof of Proposition 7. Consider the share change regression (8)

∆s ≡ s1 − s0 = γs + δss0 + us

The coefficient δs equals

δs =
cov(∆s, s0)

V (s0)
.

Hence, its sign will be determined by the sign of the covariance

cov(∆s, s0) = n−1
∑

i

(si1 − si0)si0 −∆s · s0

= n−1
∑

i

(si1 − si0)si0 (since the average share-change is zero)

= n−1
∑

i

[(si1 − sic) + (sic − si0)]si0

= XM + SM

for XM and SM defined in (9). Hence,

sign(δs) = sign(XM + SM).

By Lemma 4, a Lorenz-improvement LC1 ≻ LC0 =⇒ SM < 0. By
Lemma 5, XM ≤ 0 always. Hence, if LC1 ≻ LC0 then XM + SM < 0, and
therefore δs < 0. This proves part i) of Proposition 7.

To prove part ii) which deals with a Lorenz-worsening, note that in the
absence of positional changes, the s1 and sc vectors are the same. Therefore,
each term in the sum defining XM in (9) is zero, so that XM = 0. Hence,
the sign of cov(∆s, s0) will equal the sign of SM , and part ii) of Proposition
7 follows from Lemma 4.ii).
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Finally, part iii) is established by noting that whether share changes are
convergent or divergent depends on the sign of cov(∆s, s0), which equals
SM+XM . If we have positional changes and Lorenz-worsening, then SM >
0 and XM < 0. Therefore, the sign of the sum depends on the magnitudes
of the components. Either component can be larger in absolute value than
the other, and thus both convergence and divergence in shares are possible.

In particular, consider the transition

[2, 4, 6] → [85, 8, 7]

is an example of positional changes, a Lorenz-worsening, and convergent
share changes, i.e. δs < 0. In contrast, the transition

[2, 4, 6] → [8, 7, 85]

is an example of positional changes, a Lorenz-worsening, and divergent share
changes, i.e. δs > 0.

Lemma 6. Let µt denote the mean income in period t, βd and βs denote the
convergence coefficients given by regressions (10) and (11) in dollars and in
shares, respectively, and g denote the economy-wide growth rate in incomes
between year 0 and year 1. Then

βd = βs

µ1

µ0

= βs(1 + g).

Proof of Lemma 6. The regression in dollars (10) is

d1 = αd + βdd0 + ud.

Dividing this equation by µ1 we obtain

s1 =
αd

µ1
+ βd

d0
µ1

+
ud

µ1

=
αd

µ1
+ βd

d0
µ0

µ0

µ1
+

ud

µ1

=
αd

µ1

+ βds0
µ0

µ1

+ us.
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Hence,

αs =
αd

µ1

; βs = βd

µ0

µ1

= βd

1

1 + g
.

The Lemma follows from this last equation.

Proposition 8. Convergence in Dollars and Lorenz Dominance
Let δd be defined by the change-on-initial regression (6) when income is mea-
sured in dollars, and let g denote the economy-wide growth rate in incomes
between year 0 and year 1.

i) If g < 0, a Lorenz-improvement (LC1 ≻ LC0) implies convergence in
dollars (δd < 0).

ii) If when the income vector goes from d0 to d1, a) the transition involves
no change in positions among panel people, and b) g ≥ 0, then Lorenz-
worsening (LC1 ≺ LC0) implies divergence in dollars (δd > 0).

iii) A Lorenz-worsening (LC1 ≺ LC0) is compatible with both convergence
and divergence in dollars.

Proof of Proposition 8. Proof of part i):
By Proposition 7.i) a Lorenz-improvement (LC1 ≻ LC0) implies share

convergence, δs < 0, (or βs < 1). Coupling this with Lemma 6, which
establishes that βd = βs(1 + g), it follows that whenever g < 0, a Lorenz-
improvement implies βd = βs(1+ g) < 1, i.e. we have convergence in dollars.

Proof of part ii):
By Proposition 7.ii) a Lorenz-worsening (LC0 ≻ LC1) in the absence of

positional changes implies share divergence, δs > 0, (or βs > 1). Coupling
this with Lemma 6, it follows that whenever g > 0, such income change
implies βd = βs(1 + g) > 1.

Proof of part iii):
By Proposition 7.iii), a Lorenz-worsening (LC0 ≻ LC1) is consistent with

either βs > 1 or βs < 1. Therefore from Lemma 6 it follows that βd can
be smaller or larger than one, and thus Lorenz-worsening is consistent with
both dollar convergence and dollar divergence.
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As a form of illustration, the transition

[1, 3] → [5, 1]

is an example of a Lorenz-worsening, and convergent dollar changes, i.e.
δd < 0. In contrast, the transition

[1, 3] → [1, 5]

is an example of a Lorenz-worsening, and divergent dollar changes, i.e. δd >
0.

Proposition 9. Log-income Panel Changes and Lorenz Dominance
under a Single Rank-Preserving Transfer Sufficiently High Up in
the Income Distribution

Let gm denote the geometric mean of income at period 0, and exp(1) =
2.718. Consider two individuals i and j such that di0 > dj0 > gm ∗ exp(1).
Let h > 0 be a sufficiently small rank-preserving transfer between i and j.

a) If such a transfer h is equalizing, it produces a Lorenz-improvement LC1 ≻
LC0, rising inequality as gauged by the log-variance (V (ln d1) > V (ln d0)),
and a divergent regression coefficient (δlog > 0).

b) If such a transfer h is disequalizing, it produces a Lorenz-worsening LC1 ≺
LC0, falling inequality as gauged by the log-variance (V (ln d1) < V (ln d0)),
and a convergent regression coefficient (δlog < 0).

Proof of Proposition 9. Let gm denote the geometric mean of incomes
at period 0, i.e.

gm = exp

(

n−1
∑

i

ln di

)

.

Let h > 0 be a sufficiently small rank-preserving transfer. Consider two
individuals i and j such that di0 > dj0 > gm ∗ exp(1) and assume that the
income change when going from period 0 to 1 is the transfer h between i and
j, all other incomes remaining unchanged.
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It follows from Fields and Fei (1978) that if the transfer is equalizing it
will lead to a Lorenz-improvement, and the opposite will occur if the transfer
is disequalizing. Similarly, Cowell (2011) establishes that under the stated
assumptions V (ln d) will change in the directions established by the Proposi-
tion. The only result remaining to establish is the sign of the coefficient δlog
in a log-change regression (12) under the stated conditions.

Consider the case a) of a single rank-preserving equalizing transfer. That
is the transfer goes from the richer person i to the poorer person j. Under
the stated assumptions the sign of δlog will be determined by the covariance

cov(∆ ln d, ln d0) = n−1
∑

l

(ln dl1 − ln dl0) ln dl0 −∆ ln d · ln d0

Note that all terms in the summation are zero except for l ∈ {i, j}, so we
have

cov(∆ ln d, ln d0) = n−1 [(∆ ln di) ln di0 + (∆ ln dj) ln dj0]−∆ ln d · ln d0

= n−1 [(ln(di0 − h)− ln di0) ln di0] + · · ·

· · ·+ n−1 [(ln(dj0 + h)− ln dj0) ln dj0]−∆ ln d · ln d0

A First-order Taylor expansion around h = 0 for the first two terms is

n−1 [(ln(di0 − h)− ln di0) ln di0] ∼= −
ln di0
di0

h

n

n−1 [(ln(dj0 + h)− ln dj0) ln dj0] ∼=
ln dj0
dj0

h

n
.

A similar expansion for the average log-income change is

∆ ln d ∼=
h

n

(

1

dj0
−

1

di0

)

.

Hence, for a marginal transfer h

cov(∆ ln d, ln d0) ∼=
h

n

(

ln dj0 − ln d0
dj0

−
ln di0 − ln d0

di0

)

.

The sign of this covariance will be determined by the behavior of the
function

ln x− ln d0
x
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with derivative
1− ln x+ ln d0

x2
.

This derivative will be negative when

x > exp(1) ∗ gm.

Hence, if individuals have incomes di0 > dj0 > exp(1) ∗ gm, and an
equalizing transfer is made from i to j, then

ln dj0 − ln d0
dj0

−
ln di0 − ln d0

di0

will have a positive sign, and so δlog > 0. The case of a disequalizing transfer
is proved similarly.

Proposition 10. Convergence in Exact Proportional Changes and
Lorenz Dominance

Let θ be defined by the exact proportional change regression (5).

i) A Lorenz-improvement (LC1 ≻ LC0) implies convergence in exact pro-
portional changes (θ < 0).

ii) If when income goes from d0 to d1, the transition involves no change in
positions, then a Lorenz-worsening (LC1 ≺ LC0) implies divergence in
exact proportional changes (θ > 0).

iii) In the presence of positional changes, a Lorenz-worsening (LC1 ≺ LC0)
is compatible with both convergent and divergent exact proportional changes.

Proof of Proposition 10. As we established in the proof of Lemma 4,
when there is a Lorenz-improvement we can go from s0 to sc through a series
of rank-preserving equalizing transfers h(j, i). Furthermore, as shown in the
proof of Lemma 5, we can go from sc to s1 through a series of transfers g(l, k)
that bring forth re-ranking among individuals. For both type of transfers
h(j, i) and g(l, k), it is the case that:
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i) they appear once with a positive sign and once with a negative sign, and

ii) the sender j (or l) is always richer than the receiver i (or k)

Hence, for each transfer h(j, i) and g(l, k) we have that the products

h(j, i)

(

1

si0
−

1

sj0

)

and

g(l, k)

(

1

sk0
−

1

sl0

)

are both positive.
This in turn implies that

E

(

∆s

s0

)

=
1

n

∑

i

si1 − si0
si0

=
1

n

∑

i

(si1 − sic) + (sic − si0)

si0

=
1

n

∑

i

(
∑n

j=1 g(j, i)−
∑n

j=1 g(i, j)) + (
∑n

j=1 h(j, i)−
∑n

j=1 h(i, j))

si0

will be the sum of terms h(j, i)( 1
si0

− 1
sj0

) and g(l, k)( 1
sk0

− 1
sl0
) for all transfers

h(j, i) and g(l, k). Since all these terms are non-negative, and some will
be strictly positive, then the average percentage change in shares will be
positive.

Now, recall from Lemma 2 that whenever average percentage changes in
shares are positive, the exact proportional changes are convergent (and vice
versa), i.e.

0 < E

(

s1 − s0
s0

)

⇐⇒ θ < 0.

This establishes part i) of the Proposition.
To establish part ii) notice that in the absence of positional change, the

transfers due to positional rearrangement g(l, k) are all equal to zero. Part
ii) then follows by applying the same logic as above, now with disequalizing
rank-preserving transfers h(i, j).
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Finally, part iii) is established by noting that in the case of a Lorenz-
worsening (LC1 ≺ LC0), the contribution of rank-preserving dis-equalizing
transfers h(i, j) to E ((s1 − s0)/s0)

1

n

∑

i

∑n

j=1 h(j, i)−
∑n

j=1 h(i, j)

si0

will have an opposite sign to the contribution of positional re-rankings,

1

n

∑

i

∑n
j=1 g(j, i)−

∑n
j=1 g(i, j)

si0
.

Therefore, E ((s1 − s0)/s0), and thus θ, can have any sign.
In particular, consider the transition

[2, 4, 6] → [85, 8, 7]

is an example of positional changes, a Lorenz-worsening, and convergent
exact proportional changes, i.e. θ < 0. In contrast, the transition

[2, 4, 6] → [8, 7, 85]

is an example of positional changes, a Lorenz-worsening, and divergent exact
proportional changes, i.e. θ > 0.

Proposition 11. Convergence in Shares and in Exact-Proportional
Changes, Changes in Transfer Sensitive Inequality Indices under
Single Lorenz-Crossing from Above

If the Lorenz curve of d1 intersects that of d0 once from above and CV (d1) ≤
CV (d0), then all measures in the ITS(d) class and the coefficients of the lin-
ear regressions of share changes (δs) and exact proportional changes (θ) are
linked as follows:

i) ITS(d1) < ITS(d0)

ii) δs < 0
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iii) θ < 0

Furthermore, if whenever the income vector goes from d0 to d1, the tran-
sition involves no change in positions among panel people, the Lorenz curve
of d0 intersects that of d1 once from above, and CV (d1) ≥ CV (d0), then all
measures in the ITS(d) class and the coefficients of the linear regressions of
share changes and exact proportional changes are linked as follows:

iv) ITS(d1) > ITS(d0)

v) δs > 0

vi) θ > 0

Proof of Proposition 11. As previously mentioned, parts i) and iv) are
derived in Shorrocks and Foster (1987), Corollary 1.

To prove Part ii) we note that Theorem 2 and Corollary 1 in Shorrocks
and Foster (1987) imply that we can go from d0 to d1 by a sequence of:

a) Equalizing rank-preserving transfers and/or

b) Favorable composite transfers (FACT) whereby at each stage I) a pro-
gressive transfer occurs at lower income levels, II) a regressive transfer
occurs at higher income levels, III) ranks remain unchanged, and IV) the
coefficient of variation remains unchanged.

Consider first a single FACT, as described in b), between two share vectors
s0 and sc. Denote by ω(h, g) the progressive transfer at lower income levels
from individual h to g, where dg0 < dh0, by π(q, r) the regressive transfer at
higher income levels from individual q to r, where dq0 < dr0. It is easy to
show that the constant CV requirement IV) implies

ω(h, g)2 + π(q, r)2 + ω(h, g)(sg0 − sh0) + π(q, r)(sr0 − sq0) = 0 (A.2)

which in turn implies

ω(h, g)(sg0 − sh0) + π(q, r)(sr0 − sq0) < 0. (A.3)

Recall also that for any given equalizing transfer h(j, i)

h(j, i)(si0 − sj0) < 0.
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Therefore the term SM = n−1
∑

i(sic − si0)si0 can be expressed as the
sum of a sequence of transfers

h(j, i)(si0 − sj0) + ω(h, g)(sg0 − sh0) + π(q, r)(sr0 − sq0).

Since these terms are non-positive, and some will be strictly negative, then
SM will be negative. Furthermore, for any positional rearrangement trans-
fers g(l, k), the term

g(l, k)(sk0 − sl0)

is negative. Hence, the term XM will be negative as before, and thus, δs < 0.
To prove Part iii) recall that, following Lemma 2, it suffices to show that

under the transfers described in a) and b)

0 < E

(

s1 − s0
s0

)

holds. In this case, we have that the proportional changes brought by a
FACT transfer b) equal

ω(h, g)

(

1

sg0
−

1

sh0

)

+ π(q, r)

(

1

sr0
−

1

sq0

)

=

ω(h, g)

(

sh0 − sg0
sg0sh0

)

+ π(q, r)

(

sq0 − sr0
sr0sq0

)

,

while this term involves the sum of a positive and a negative term, by equa-
tion (A.3), and the fact that sg0 < sh0 ≤ sq0 ≤ sr0, the overall term will be
greater than zero. Also, from our proof of Proposition 10, we know that the
proportional change for an equalizing transfer is

h(j, i)

(

1

si0
−

1

sj0

)

> 0,

and the proportional change for a positional rearrangement transfer is

g(l, k)

(

1

sk0
−

1

sl0

)

> 0.

Hence,
∑

i

(

si1−si0
si0

)

can be expressed as the sum of a sequence of terms

h(j, i)

(

1

si0
−

1

sj0

)

+ω(h, g)

(

sh0 − sg0
sg0sh0

)

+π(q, r)

(

sq0 − sr0
sq0sr0

)

+g(l, k)

(

1

sk0
−

1

sl0

)
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and this sum is strictly positive, and thus θ < 0.
The proof of Parts v)-vi) follow by reproducing the previous steps, now

with rank-preserving dis-equalizing transfers, composite transfers where a
regressive transfer occurs at lower income levels, together with a progres-
sive transfer at higher income levels, without positional-change transfers, i.e.
g(l, k) = 0, and where condition IV) in b) is maintained.

Proposition 12. Convergence in Shares and in Exact-Proportional
Changes, Changes in Transfer Sensitive Inequality Indices under
Multiple Lorenz-Crossings

If the Lorenz curve of d1 intersects that of d0 at least once and initially
from above and CVi(d1) ≤ CVi(d0) ∀i = 1, 2, . . . , n+ 1, where Pi denotes the
population shares (as in Definition 9) and CVi(·) denotes the coefficient of
variation within the subpopulation defined by P ∈ [0, Pi], then all measures in
the ITS(d) class and the coefficients of the linear regressions of share changes
(δs) and exact proportional changes (θ) are linked as follows:

i) ITS(d1) < ITS(d0)

ii) δs < 0

iii) θ < 0.

Furthermore, if whenever the income vector goes from d0 to d1, the transi-
tion involves no change in positions among panel people, the Lorenz curve of
d0 intersects that of d1 at least once and initially from above, and CVi(d1) ≥
CVi(d0) ∀i = 1, 2, . . . , n+ 1, for CVi defined above, then all measures in the
ITS(d) class and the coefficients of the linear regressions of share changes
and exact proportional changes are linked as follows:

iv) ITS(d1) < ITS(d0)

v) δs > 0

vi) θ > 0
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Proof of Proposition 12. Parts i) and iv) follow immediately from Propo-
sition 2 in Davies and Hoy (1995). Yet by Theorem 2 in Shorrocks and Foster
(1987), whenever ITS(d0) > ITS(d1) we can go from d0 to d1 by a sequence
of equalizing rank-preserving transfers and/or favorable composite transfers.
Parts ii) and iii) follow by an argument identical to the one used to prove
parts ii) and iii) of Proposition 11.

The proofs of parts v) and vi) follow by similar arguments now going in
the opposite direction, under the assumption of no positional changes.
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