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Abstract

I augment the standard Tullock contest by adding a first stage in which each of
the potential contestants has the option of contributing some resources to a public
defender or government. In the subsequent subgame, if one of the contestants attacks
the other, then the government contributes its resources to the defence of the agent
that is attacked. I show that, if the resource distribution is not too unequal, agents
make positive contributions to government in equilibrium and there is no fighting. The
deterrence equilibria are pareto superior to the corresponding equilibria of the pure
Tullock contest. The Rawlsian criterion yields the most efficient equilibrium for each
given resource distribution, hence progressive taxation is efficient in this model. Finally,
for a range of very unequal resource distributions, the equilibrium size of government
is too large.
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seminar participants at Boston University and UNSW and participants at the 2015 Conference on Growth
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1. Introduction

The question of how stable property rights emerge out of a state of anarchy has
exercised social thinkers from the very earliest times. In contemporary economic liter-
ature, a construct that has been widely used to investigate this question is the rational
contest model, in which agents can use resources in their possession to engage in pro-
duction, or to wrest away resources from other agents. The contest model is similar
to constructs that been used to analyse lobbying contests and patent races. Conse-
quences of verious formulations of the nature of contest and the form of the contest
success function are explored in a number of papers by Hirshleifer (1991) Hirshleifer
(1995), Skaperdas (1992), Grossman and Kim (1995), as well as several others.

Many of these papers investigate conditions under which, in the absence of an
external enforcer, the potential contestants will enter into active conflict, and conditions
under which they will coexist in peace. In Hirshleifer’s formulation resources that are
devoted to conflict can be used both for aggression and defence, thus an investment to
dissuade the adversary may also tun out to provide incentive for aggression. Grossman
and Kim consider investments that are earmarked for aggression (e.g., cannons) or
defence (e.g., fortification) and obtain equilibria in which peace may sometimes prevail.

One conclusion that emerges from most of these models is that conflict is more
likely when there is high inequality between the agents, and in these cases the poorer
agent is more likely to be the aggressor.

Surprisingly, however, very few contributions explore the possibility that the po-
tential contestants, in anticipation of the possible destructiveness of conflict, may enter
into cooperation to create an enforcement mechanism as a public good. An exception
is McBride, Milante, and Skaperdas (2011), who explore a model in which contestants
can invest in a state, which is able to protect from conflict a fraction of all resources; the
fraction being determined by the total investment (see also McBride and Skaperdas,
2007).

In this paper I use a simpler construction. As in McBride, Milante, and Skaperdas
(2011) the two potential contestants choose to make contributions to enable a public
defender. In the subsequent subgame each contestant has a choice to attack the other.
If one of the contestants chooses to be an aggressor (and the other does not), then the
public defender contributes its resources to the defence of the victim.

I find that peace prevails (though at a cost) except when inequality is extreme, in
which case agents no longer contribute to public defence in equilibrium. For a large
range of parameter values there are multiple equilibria, with the richer agent contribut-
ing a larger or smaller fraction of the public defence. With appropriate investments,
peace becomes incentive compatible for two reasons; first, resources invested in public
defence are no longer available as conflict payoffs to the contestants, making conflict
less attractive, and secondly the same defence investment acts as a deterrant against
aggression by both contestants.

Two additional results are of interest. First, when there are multiple equilibria, the
most efficient equilibrium is always the one in which the richer agent makes the largest
contribution consistent with equilibrium. If we interpret these contributions as taxes
determined by a participatory government, then the efficient taxation scheme is the



most progressive scheme that is consistent with peace. Secondly, we find that there is
a range where inequality is high (but not sufficiently extreme for government to break
down) where a contest would in fact be more efficient than a peace equilibrium. An
interpretation is that, when inequality is high, government is inefficiently large.

Beviá and Corchón (2010), which is in some ways close to this paper, consider
the possibility that the richer agent may transfer some of her wealth to the poorer in
order to avoid conflict. Such transfers reduce inequality and therefore the likelihood
of conflict. However, when we introduce this option in the present model, we find that
contributions to public defence is more attractive to the richer agent than transfers to
the poorer agent.

The next section lays out the canonical contest model in its simplest form, and
derives the equilibrium outcome. Section 3 describes the model with investment in
public defence. Section 4 establishes the equilibria. Section 5 discusses efficiency
concerns and identifies the most efficient equilibria. It also shows that the worst peace
equilibria are more efficient than the pure contest outcome. The main results are
summarised in this section. Section 6 concludes.

2. Background: pure contest

2.1. Setting

I adopt a simple version of the standard model (e.g., Hirschleifer). This section
describes the base model and its equilibria. Modifications are introduced later.

There is one unit of resources distributed between two agents, 1 and 2. Without
loss of generality we assume that agent 1 is the less rich agent.

R1 + R2 = 1, 0 < R1 ≤ R2

Each agent i = 1, 2 can devote some or all of his resources xi ≤ Ri as arms to fight.
Investments are made simultaneously.

If at least one agent chooses to fight (or attack) then they fight. If they fight then
the remaining resources are redistributed between the agents in proportion with their
arms. Alternatively, each agent succeeds in capturing the entire remaining resources
with a probability equal to his share of the total arms. Agents are risk-neutral, so the
two above interpretations are equivalent. Agent i’s payoff is Πi.

Πi(R, x,war) =
xi

xi + xj
[1− (xi + xj)]

If neither agent chooses to fight then each retains his remaining resources

Πi(R, x, peace) = Ri − xi

.
Each agent maximizes his payoff Πi.
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2.2. Solution

SPNE is the natural solution concept. In the last stage, i will attack if

Πi(R, x,war) > Πi(R, x, peace) ⇒ xi
Ri

>
xj
Rj

If i attacks, he will choose xi to maximize

max
xi

Πwar
i ⇒ xi = min{√xj − xj , Ri}

Similarly, to defend j will choose xj = min{√xi − xi, Rj}

Note that
√
xj − xj reaches a maximum of 1

4 when xj = 1
4 , which is also a fixed

point of y =
√
x−x. The agents’ response functions (xi as a function of xj) are plotted

in Figure 1.

	
  

Figure 1: Optimal attack and defence in pure contest
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First, note that in equilibrium each player invests positive amounts in arms. The
equilibrium investments and payoffs are:

If 1
4 ≤ R1 ≤ R2, then investments are x1 = x2 = 1

4 and payoffs are Π1 = Π2 = 1
4 .

If R1 < 1
4 < R2 then investments are x1 = R1, x2 =

√
R1 − R1, and payoffs are

Π1 =
√
R1(1−

√
R1), Π2 = (1−

√
R1)

2.

There is war except in the case R1 = R2. When R1 = R2, the contestants arm
optimally in equilibrium, and subsequently are indifferent between war and peace.

We will denote the equilibrium outcomes of pure contest by the superscript C, i.e.,
xC1 , x

C
2 ,Π

C
1 ,Π

C
2 .

The equilibrium payoffs of an agent are plotted against his (share of the) intital
endowment in Figure 2.

	
  

	
  

Figure 2: Contest payoffs plotted against endowment
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3. Investing in public defence

We augment this game by adding a first decision stage before the players choose
their investments in arms.

• First, each player simultaneously chooses to invest an amount gi to endow a public
defender (”government”).

• Next investments in private arms are chosen.

• Finally, attack decisions are made.

• If both attack, then the government stands aside. A pure contest occurs using
only private arms to divide the remaining resources.

• If neither attacks then there is peace and each consumes his remaining resources.

• However, if agent i chooses to attack and agent j does not, then the government
adds its resources to the defence of j. Payoffs are as before.

3.1. The game

We start with R1 + R2 = 1 0 < R1 ≤ R2. The game has three stages.

3.1.1. Game form

Stage 1 (game Γ): Agents simultaneously choose the amount gi each will con-
tribute to public defence, subject to gi ≤ Ri.

– A pair (g1, g2) is a contribution profile (or contribution).

– Let g = g1 + g2 and g = (g1, g2).

– Define wi = Ri − gi, and w = (w1, w2).

Stage 2 (subgame Γ2): Agents observe g and simultaneously choose their arms
investments xi ≤ wi.

– A pair (x1, x2) is an arms profile (or arms).

– Let x = x1 + x2, and x = (x1, x2).

Stage 3 (subgame Γ3): Agents observe x. Then they simultaneously choose ai ∈
{0, 1}. [0 is ”defend”, 1 is ”attack”.]

– A pair (a1, a2) is an attack profile. Let a = (a1, a2).

We use z = [g,x,a] to denote the sequence of decisions in a play of the game.

3.1.2. Payoffs and equilibria

If (a1, a2) = (0, 0), then

Πi(z) = Ri − gi − xi, i = 1, 2.

5



If (a1, a2) = (1, 1) then

Πi(z) =
xi

xi + xj
[1− x− g]

If ai = 1 and aj = 0, then

Πi(z) =
xi

xi + xj + g
[1− x− g]

Πj(z) =
xj + g

xi + xj + g
[1− x− g]

z = [g,x,a] is an equilibrium if it is a subgame-perfect Nash equilibria of the game Γ.

3.2. Aggression and deterrence

We will be particularly interested in equilibria in which both players choose not
to arm, and hence not to attack. From the discussion of the pure contest model, it
is obvious that this requires positive contributions to public defence by at least one
player. Further, the sum of the contributions must be large enough that each player
prefers to not arm and not attack given that the opponent also does not arm.

Definitions: We say that a player i is deterred by a contribution profile g = (g1, g2)
if, following g, i finds it optimal to not arm (and hence not attack) even when the
opponent does not arm, i.e., xj = 0. Correspondingly g is full deterrent if both players
are deterred in Γ2 following g. Finally, g is minimal full deterrent if there does not
exist g′ � g which is also full-deterrent.

Lemma 1 A contribution profile g is a full deterrent if g ≥ ĝ(w), where

ĝ(w) =

{
(1−

√
min{w1, w2})2 if min{w1, w2} ≥ 1

4
1

2
−min{w1, w2} if min{w1, w2} < 1

4

[All proofs are in the appendix]

Note that to ensure full deterrence it is sufficient to deter the player who has the
smaller remaining resource endowment min{w1, w2} after contributions. Further, the
minimum contribution needed for full deterrence increases as min{w1, w2} falls.

Lemma 2 (i) Let g > 0, then in the equilibrium of the subgame Γ2 we must have
a∗ 6= (1, 1).

(ii) If z∗ is an equilibrium outcome with a∗i = 1, then g∗i = 0.

Lemma 2 is self-evident (though a proof is provided). It says that, first, if a positive
contribution has been made then both players will not attack in equilibrium. If one
player attacks, then the other is better off not attacking since he gets the benefit of the
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public defence. Secondly, if a player attacks in equilibrium, then he will not contribute
to public defence, since the defence takes away from his resources, and reduces the
expected payoff from attacking.

It then follows that, in equilibrium, either the total contribution is full deterrent
and neither player invests in private arms, or there is a contest in which case at most
one player (who does not attack) contributes to public defence. If he does so, he
contributes an amount not exceeding his optimal investment in arms, and then further
invests in private arms to make up the remainder of his optimal defence. Thus in the
ensuing conflict, each player actually has at his disposal an amount of arms that equals
his optimal arms investment in pure contest.

Thus in an equilibrium with conflict, if an agent invests in public defence that
investment is inconsequential, and the agent is indifferent between directing those re-
sources to public defence or private arms. To avoid unnecessary complication, we will
assume that in such a case the agent regrains from public investment.

Assumption 1 In an equilibrium z∗ if there is war and an agent is indifferent between
contributing an amount gj to public defence or adding it to his private arms, then he
adds it to his private arms.

Proposition 1 If z∗ is an equilibrium outcome, then either (i) g∗ is minimal full
deterrent with x∗ = (0, 0) and a∗ = (0, 0), or (ii) Π(R, z∗) = ΠC(R, xC ,war).

4. Deterrence equilibria

From Proposition 1 and Assumption 1 it follows that in equilibrium, agents will
either together contribute enough to ensure full deterrence, or they will not invest in
public defence at all. In the former case, we must have g = ĝ(w), the minimum contri-
bution required for full deterrence. Additional contribution is costly to the contributor
and does not produce additional payoff.

By Lemma 1 the minimum full-deterrence contribution g is uniquely determined
by the smaller of the two remaining resource endowments. Hence we can identify the
vectors w that are compatible with full deterrence.

Consider the subgame Γ2 with initial post-contribution allocation (w1, w2) and as-
sociated total public defence contribution g = 1 − (w1 + w2). W.l.o.g. let w1 =
min{w1, w2}.

Proposition 2 Suppose the contributions (g1, g2) in the first stage are such that:

w2 ≤

{
1
2 if w1 <

1
4

2(
√
w1 − w1) if w1 ∈ [14 ,

4
9 ]

(1)

Then the equilibrium in the subgame Γ2 is (x,a) = (0, 0), i.e., peace with no expenditure
on private arms.

There are no peace equilibria in subgame Γ2 when min{w1, w2} > 4
9 .
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Figure 3: Payoff frontier with full deterrence

For any value of w1, we can find the largest value of w2 that is consistent with
full-deterrence using Proposition 2. This defines the full-deterrence frontier, mapped
in Figure 3.

Figure 3 shows the consumption pairs that are attainable with full deterrence.
The line joining (1, 0) and (0, 1) plots the possible distributions of initial resources.
We restrict attention to the section of this line lying above the 45-degree line, where
R1 ≤ R2. The analysis of the complementary segment is symmetrical.

The curved frontier is the limit of the consumption pairs (w1, w2) that are con-
sistent with full deterrence.1 To see that allocation below the frontier also induce
full-deterrence, note that in an allocation such as A, the public contribution is larger
than in B, but min{w1, w2} = w1 is unchanged. Thus since B is compatible with
full-deterrence so is A. A similar argument applies to C relative to D.

1Since full-deterrence implies x = 0 in the subgame, wi is indeed the consumption of i in the equilibrium
of the subgame.
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4.1. Deterrence contributions

For a given resource allocation R, consider the set of minimal full deterrence con-
tributions G(R). If g ∈ G(R), then it follows that w = R−g is a consumption pair on
the full deterrence frontier. Let W (R) be the set of such consumption vectors. Note
that no vector in W (R) (weakly) dominates any other vector in W (R).

In figure 3, if R� (14 ,
1
4), then W (R) is the segment of the full deterrence frontier

contained in the rectangle defined by R and (14 ,
1
4). If R1 ≤ 1

4 , then W (R) = {(R1,
1

2
)},

and if R2 ≤ 1
4 then W (R) = {(1

2
, R2)}.

Thus when R1 or R2 is ≤ 1
4 the full deterrence consumption vector is unique, but

when Ri ∈ (14 ,
3
4), i = 1, 2, there is a continuum of such vectors. Using Proposition 2,

we can define the range of feasible consumptions under full deterrence for an individual
player.

Proposition 3 Let Z(R) be the set of minimal full-deterrence outcomes corresponding
to initial resource allocation R. Then the set of attainable consumptions for Player i
in outcome z ∈ Z(R) are (where j 6= i):

wi



= Ri if Ri ≤ 1
4

∈ [14 , Ri] if Ri ∈ (14 ,
1
2 ]

∈ [12{1 +
√

(2Rj − 1)}, 12 ] if Ri ∈ (12 ,
5
9 ]

∈ [2{
√

1−Rj − (1−R2)}, 12 ] if Ri ∈ (59 ,
3
4 ]

= 1
2 if Ri >

3
4

(2)

In figure 4 we plot the lower and upper bounds for the payoffs for player i that
remain after contributions that are compatible with minimal full deterrence (with com-
plementary contributions by player j), corresponding to each endowment of resources.
Note that the curvature of the full deterrence frontier in the range R1 ∈ (14 ,

1
2) implies

that the contributions of the two players are imperfect substitutes; a reduction in g2
must be compensated by a more than equal increase in g1. The reverse is true in the
range R1 ∈ (12 ,

3
4).

5. Equilibria and efficiency

Proposition 3 describes the contribution profiles that are candidates for full de-
terrence equilibria. Observe that the richer player must always contribute to a full
deterrence outcome. The poorer player may not contribute, and will indeed not con-
tribute at all when his initial resource endowment is less than 1

4 . In order for full
deterrence to be an equilibrium outcome, it is necessary that each player that con-
tributes has a payoff under full deterrence that is no less than the payoff he would
obtain under pure contest.

Figure 5 superimposes the full deterrence payoffs (Figure 4) on the pure contest
payoffs (Figure 2) for a given player. The pure contest payoffs are strictly greater than
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Figure 4: Maximum and minimum payoffs with full deterrence

full deterrence payoffs for Ri ∈ (0, 14), and in Ri ∈ (
√

2 − 1

2
, 1]. In the former range,

player i is the poorer player and does not contribute to public defence in equilibrium,
hence he cannot decide on full deterrence. But in the upper range, it is the richer player
that makes the entire contribution, hence the choice between conflict and deterrence

is his to make. It follows that if max{R1, R2} ∈ (
√

2 − 1

2
, 1], then the richer player

will not invest in deterrence, and the equilibrium outcome will be pure conflict. For

max{R1, R2} ∈ (
1

2
,
√

2 − 1

2
], on the other hand, deterrence is weakly preferred if the

richer player makes the maximum contribution, and strictly preferred if the poorer
player makes any contribution at all, hence full deterrence is the equilibrium outcome.

This establishes the equilibria corresponding to the different resource endowments,
summarised in the following proposition.

Proposition 4 If R1, R2 ∈ [32 −
√

2,
√

2 − 1

2
] and R1 6= R2, then all equilibria are
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Figure 5: Comparison of payoffs under pure contest and full deterrence

full-deterrence. If initial endowments are outside these limits then in the equilibrium
outcome there is war, and payoffs are equal to the pure contest payoffs for those en-

dowments. If R1 = R2 =
1

2
, then there are both full-deterrence equilibria and a war

equilibrium, and all of the full-deterrence equilibria pareto-dominate the war equilib-
rium.

Each equilibrium is pareto-optimal, since under minimal full deterrence the contri-
butions of the two players are (imperfect) substitutes for each other. However, for a
given initial distribution of resources, the total consumption in the economy in an equi-
librum differs with the allocation of contributions between the two players. A possible
measure of aggregate efficiency is total consumption in the economy:

c = 1− g − x.

We can compute c in the pure conflict outcome corresponding to each distribution of
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resources. In full deterrence equilibria x = 0, so c = 1−g, hence the most efficient equi-
librium is the one that minimizes g. But since g = ĝ(min{w1, w2}), this is equivalent
to maximizing min{w1, w2}. This can be restated as:

Proposition 5 For resource distributions that accommodate multiple full deterrence
equilibria, the Rawlsian criterion provides the most efficient allocation of public defense
contributions.

The proof follows directly from Lemma 1, and is omitted.
Proposition 5 says that, for efficient full-deterrence, the richer agent must make the

maximum contribution consistent with full deterrence. If contributions were allocated
as taxes by a public authority, then Proposition 5 leads to the following:

Corollary 3 Suppose that when full deterrence is mutually incentive compatible, a
public authority raises public defense contributions through taxes. Then the most effi-
cient taxation scheme is one that is most progressive subject to incentive-compatibility.

The efficient contributions and consumption profiles corresponding to full-deterrence
equilibria can be computed from Proposition 3 for different resource distributions , and
are as follows:

• For 4
9 < R1, R2 < 5

9 the efficient equilibrium outcome is w1 = w2 = 4
9 , g = 1

9 .

• For 5
9 ≤ R2 ≤ 3

4 the efficient equilibrium outcome is w1 = R1, g = (1 −√
w1)

2, w2 = R2 − g.

• For 3
4 ≤ R2 ≤

√
2 − 1

2
, the unique equilibrium outcome is w1 = R1, g =

1

2
−R1, w2 =

1

2
.

Finally we note that full deterrence is not efficient over the entire range in which it

is an equilibrium. there is a range to the left of R2 =
√

2 − 1

2
where the pure contest

outcome is more efficient than the equilibrium outcome, but the equilibrium is full
deterrence.

Proposition 6 In the range R1 ∈ (32 −
√

2, 1−
√
3
2 ), the equilibrium is full deterrence

where conflict would yield a more efficient outcome.

The intuition is that in this range the richer player unilaterally pays for deterrence, and
for him the deterrence payoff is larger than the conflict payoff. Hence he unilaterally
ensures full-deterrence. However, the poorer player would gain relative to his initial
endowment in a pure contest, and this gain is larger than the loss that the richer player
would suffer if pure contest replaced the equilibrium deterrence outcome.

Thus when income distributions are very unequal (but not sufficiently unequal for
public defense to become non-viable) the equilibrium outcome is deterrence through
public defense, but this is inefficient. In other words, for resource distributions in this
range, the government is too large.
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6. An extension

Throughout this paper I assumed that, if there is conflict, then the public defender
sides against the aggressor, and if the aggressor is defeated it turns over the spoils of war
to the agressee. However, peacekeepers or defenders in reality, be they governments or
international organizations, do not act in this way. Some or all of the agressor’s wealth
may be confiscated, and he may be subjected to penalties or sanctions. Proceeds may
be used to make reparations to the other party. However, the peacekeeper does not
simply reduce to a mercenary army at the service of the agent that has been attacked.

Fortunately the model is not sensitive to a modification of this assumption. Con-
sider the following alternative specification of payoffs:

1. If there is no conflict then each agent consumes any resources that remain after
contributions and arms expenditures as before.

2. If there is conflict and there is a single aggressor (i.e., a1+a2 = 1), then any public
defence contributions are pooled with the arms of the agent that is attacked. If the
aggressor loses, then his remaining wealth is confiscated by the public defender
and destroyed. In particular, the agent that was attacked does not keep the
aggressor’s remaining resources.

Note that this does not change the agressor’s incentives, since if he is defeated
then he loses his remaining resources anyway, and his payoff is no different if he wins.
For the other agent, it is now less attractive to contribute to public defence if he is
anticipating a conflict.

However, he would anticipate a conflict only if his contribution is less than sufficient
to ensure full-deterrence. In this case he will not contribute at all, but instead channel
the corresponding resources to private arms. In other words, with this alternative
specification of payoffs, Assumption 1 becomes a proposition. Since I have used that
assumption throughout, the earlier results all continue to hold.

Define the game Γ′ as the game form described in Section 3.1.1 with the payoff
function Π′ described below:

• If (a1, a2) = (0, 0), then

Π′i(z) = Ri − gi − xi, i = 1, 2.

• If (a1, a2) = (1, 1) then

Π′i(z) =
xi

xi + xj
[1− x− g]

• If ai = 1 and aj = 0, then

Π′i(z) =
xi

xi + xj + g
[1− x− g]

Π′j(z) =
xj + g

xi + xj + g
[Rj − gj − xj ]

Note that the only difference between the two payoff functions is in j’s payoff when
ai = 1 and aj = 0.
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Proposition 7 : z∗is an equilibrium of Γ′ if and only if it is an equilibrium of Γ.

(This needs a proof! I am sure of the “if”, but not yet happy with the
proof of the “only if”.)

7. Conclusion

This paper re-examines a standard model of contest in anarchy, where two agents
possess resources that can be devoted to consumption or to acquisitive warfare. In the
simplest version of that economy, the equilibrium necessarily involves conflict. However,
since war is wasteful, it is likely that one or both agents would be willing to precommit
to avoid conflict, even if such precommitment is somewhat costly.

This is a context that is intuitively conducive to the genesis of a peacekeeping state.
I use a simple model of an exogenous peacekeeper which is effective to the extent that
it is endowed with resources voluntarily provided by the potential contestants. I show
that, for a large range of distributions of income, the agents will voluntarily commit
sufficient resources to the peacekeeper. The resultant equilibrium is characterised by
the absence of conflict.

However, when inequality is extreme, the peacekeeper is not endowed in equilibrium,
and there is conflict. For less extreme but still high inequality, the peacekeeper is
endowed and there is peace, but this is less efficient than pure conflict.

According to this paper, when inequality is low to moderate (in a sense made
precise), all agents find that the existence of a peacekeeping government is in their
interest. For higher inequality, the poorer agent finds government contrary to his
interest, and at very high levels of inequality a peacekeeping government is incompatible
with the interests of either agent. We should expect to see the least conflict in more
equal societies and the most in very unequal ones, which is an observation that is
possibly consistent with casual empiricism.

However, it is important to note that the political assumptions underlying this
paper are extremely naive. I have assumed throughout that the public defender acts
impartially, even though it may be funded entirely or largely by the richer agent. If
instead the agent that contributes more to the defender can bend it to his own purposes,
then the defender reduces to a militia, and clearly our peace equilibria will break down.
Hence the analysis here needs to be supported by a much more sophisticated political
theory of the nature of the state. However, that analysis is beyond the scope of the
present paper.
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Appendix: Proofs

Proof of Lemma 1.
Let g be given and set xj = 0. If i attacks with arms xi, then his expected payoff is

Πi(xi, g) =
xi

xi + g
[1− (xi + g)].

This is maximised at x̃i(g) =
√
g − g, and is increasing in xi for xi <

√
g − g Thus i

will choose to arm up to xi(g, wi) where

xi(g, wi) =

{ √
g − g if wi ≥

√
g − g

wi if wi <
√
g − g

His corresponding payoff can be obtained from the previous two expressions:

Πi(g, wi) =

{
(1−√g)2 if wi ≥

√
g − g

wi
wi+g [1− (wi + g)] if wi <

√
g − g

Define g(wi) as the value of g that solves wi = Πi(g, wi). Since Πi(g, wi) is decreasing
in g, it follows that g deters i if and only if g ≥ g(wi).
Now let g = g(wi).
First suppose wi ≥

√
g−g, so wi = Πi(g, wi) = (1−√g)2. Then (1−√g)2 ≥ √g−g ⇒

g ≤ 1
4 ⇒ wi ≥ 1

4 . Conversely note that
√
g − g ≤ 1

4 ∀g ∈ [0, 1], so if wi ≥ 1
4 then

Πi(g, wi) = (1−√g)2. Hence it follows that if wi ≥ 1
4 then g(wi) = (1−√wi)

2.

Next let wi <
√
g − g so wi = wi

wi+g [1 − (wi + g)] ⇒ g =
1

2
− wi. Then wi <√

1

2
− wi − (

1

2
− wi) Rightarrow wi <

1
4 . Conversely, if wi <

1
4 then by the previous

paragraph we cannot have (1−√g)2 ≥ √g − g, hence indeed wi <
√
g − g.
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from the above it follows that:

g(wi) =

{
(1−√wi)

2 if wi ≥ 1
4

1

2
− wi if wi <

1
4

Finally, suppose wj ≥ wi. If wi ≥ 1
4 then g(wi) = (1−√wi)

2 > (1−√wj)
2 = g(wj). If

wi <
1
4 and g(wi) =

1

2
−wi >

1
4 then wj = 1−wi − g(wi) =

1

2
and g(wj) = (1− 1√

2
<

1
4 < g(wi). Hence if wj ≥ wi, then g(wi) is sufficient to deter j.
This establishes the lemma. �

Proof of Lemma 2:
(i) If ai = 1, then j 6= i improves his payoff by setting aj = 0 since then in the
subsequent contest the public defence is added to j’s arms.
(ii) Any increase in g reduces i’s payoff if i will attack, hence it is suboptimal for him
to contribute. �

Proof of Proposition 1:
(i) If g is full deterrent, then neither player has an incentive to arm and attack if the
other does not. Hence in the subgame x∗ = 0 and a∗ = 0 is an equilibrium. Further
if g > ĝ(w) and there is peace in the subgame, then at least one player i can increase
his payoff by reducing gi, so in equilibrium g = ĝ(w).
(ii) Let a∗1 = 1, then by Lemma 2 a∗2 = 0, g∗1 = 0 ⇒ g∗ = g∗2, and x∗1 > 0. Since z∗ is
an equilibrium, it must be true that x∗1 is the optimal pure-contest response to g∗2 + x∗2
given R1, and g∗2 + x∗2 is the optimal pure-contest response to x∗1 given R2. Hence
each player acquires exactly the arms he would acquire in the pure context equilibrium
given (R1, R2). �

Proof of Proposition 2
Corresponding to Lemma 1 consider the two cases of minimal full deterrence:

(i) If w1 <
1
4 then ĝ(w1) =

1

2
− w1 and w2 =

1

2
.

(ii)If min{w1, w2} = w1 ≥ 1
4 . Then ĝ(w1) = (1−√w1)

2. Hence

w2 = 1− [w1 + (1−
√
w1)

2] = 2(
√
w1 − w1)

It can be checked that w2 ≥ w1 provided w1 ≤ 4
9 . When w1 = 4

9 , we have w1 = w2,
and ĝ(w1) = 1

9 .

We know that hatg(w) depends only on min{w1, w2} ad g > ĝ(w) is also full deterrent.
Hence all values of w2 between w1 and the value derived above are consistent with full
deterrence.

If w2 ≥ w1 > 1
4 , then from (ii) above w1 + g(w1) + w2 ≥ 2w1 + (1 − √w1)

2 =
3w1 − 2

√
w1 + 1. But the last term is ≤ 1 only if w1 ≤ 4

9 . Hence full deterrence is not
feasible with min{w1, w2} > 4

9 . �

Proof of Proposition 3.
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We focus on the case R1 ≤ R2. The proof for the complementary case is symmet-
rical.

First suppose that R1 < 1
4 . Then the post-contribution allocation must have

min{w1, w2} < 1
4 , and hence full deterrence requires g = 1

2 − min{w1, w2}. Hence
contributions by i s.t. wi = min{w1, w2} do not alter the contribution required by
j 6= i, so the only incentive compatible contribution from i is gi = 0, and j must
contribute gj = Rj− 1

2 . It follows that when R1 <
1
4 , the only contribution profile that

is a candidate for equilibrium is (g1, g2) = (0, R2 − 1
2), which yields the consumption

profile (R1,
1
2).

Next consider 1
4 ≤ R1 ≤ 1

2 ≤ R2. For each R1 In this range there are multiple
configurations g that are consistent with minimal full deterrence. Recall that in this
case the equilibrium conflict payoff for each player is 1

4 , which is the upper bound on
the payoff that either player can attain in subgame Γ2 if public contributions in stage
1 do not attain full deterrence. It therefore follows that the maximum contribution i
is willing to make is gi ≤ (Ri − 1

4).
First consider R1 ∈ [14 ,

4
9 ] ⇒ R2 ∈ [59 ,

1
4 ]. We know from Lemma 2 that player 2 can

unilaterally ensure full deterrence by contributing (1−
√
R1)

2 , which leaves him with
consumption w2 = 2(

√
R1−R1) ≥ w1. Since 1 does not contribute, w1 = R1 = 1−R2,

the resultant consumption vector is (R1, 2[
√

1−R2 − (1−R2)]).
For R1 ∈ (49 ,

1
2 ], if player 2 contributes sufficiently to deter player 1, this leaves him

with w2 < w1. Hence to ensure full deterrence with no contribution from player 1, he
must deter himself. This implies g2 = (1 − √w2)

2. Since g2 + w2 = R2, This leaves

player 2 a consumption of [12{1 +
√

(2R2 − 1)}]2, which ranges from w2 = 4
9 when

R2 = 5
9 to w2 = 1

4 when R2 = 1
2 .

The payoffs for the complementary range can be found symmetrically. �

Proof of Proposition 4
We focus on R : R1 ≤ R2. An identical proof applies when the inequality is

reversed. We consider three cases.

Case 1: R1 ∈ [14 ,
1

2
) ⇔ R2 ∈ (

1

2
, 34 ].

Suppose there is an equilibrium z∗ such that a∗ 6= 0, i.e., there is war. Then g∗ is not
full deterrent, and by Proposition 1 the players receive the pure contest payoffs (14 ,

1
4).

Thus player 1 will never contribute more than R1 − 1
4 to public defence, hence in any

equilibrium we must have w1 ≥ 1
4 = ΠC

1 .
But then the largest contribution 2 must make to ensure full-deterrence is g2 = 1

4 −
g1 ≤ 1

4 , which leaves him with w2 > 1
4 = ΠC

2 . Hence for any incentive compatible
contribution from player 1, player 2 prefers to ensure full-deterrence rather than engage
in contest. Thus if there is an equilibrium then it must be full-deterrence.

It is easy to verify that g = (R1− 1
4 ,

1

2
−R1) is an equilibrium. Hence there is at least

one equilibrium, and any equilibrium is full-deterrence.

Case 2: R1 = R2 =
1

2
.

The arguments for case 1 carry over for any contribution 0 < g1 < 1
4 , which lead to

full-deterrence equilibria with payoffs Πi >
1
4 , i = 1, 2.

17



However, for g1 = 0, player 2 has two optimal choices; he can contribute g2 = 1
4 ,

which ensures full-deterrence and yields him a payoff of 1
4 , or he can set g2 = 0 (cf.

Assumption 1), leading to war which also yields a payoff of 1
4 . An equivalent argument

applies to player 1, hence g = (0, 0) followed by a pure contest is an equilibrium.
It follows that the deterrence equilibria where each player contributes a strictly positive
to public defence strictly dominate the unique pure contest equilibrium. Further, if

g1 = 0, the deterrence equilibrium with g2 = 1
4 yields payoffs (

1

2
, 14), which pareto

dominates the contest outcome.

Case 3: R2 >
3
4 ⇔ R1 <

1
4 .

By Proposition 3, any full-deterrence equilibrium must have g1 = 0 and g2 = R2 −
1

2
,

yielding player 2 a payoff of
1

2
.

A pure contest equilibrium yields player 2 a payoff of (1−
√
R1)

2.
Hence the nature of the equilibrium depends on player 2’s choices, and he will choose
to deter if and only if

1

2
≥ (1−

√
R1)

2 ⇔ R1 ≥ (
3

2
−
√

2).

�

Proof of Proposition 6
Let R : R1 ∈ [32 −

√
2, 14 ]. We know from an earlier proposition that in this range

player 2 unilaterally ensures full-deterrence in equilibrium, with g2 =
1

2
− R1. Hence

the sum of consumptions in equilibrium is c∗ =
1

2
+ R1.

Consider the corresponding pure contest outcome (see Section ??). Since player 1 is
constrained, she invests her entire endowment in arms, and 2 responds optimally, which
yields payoffs Π1 =

√
R1(1 −

√
R1) and Π2 = (1 −

√
R1)

2. Thus total consumption is
cC = (1−

√
R1).

Thus full-deterrence is efficient if and only if

1

2
+ R1 ≥ (1−

√
R1),

which reduces to R1 ≥ 1−
√
3
2 , which it can be verified is greater than 3

2 −
√

2. �
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